New Lower Bounds for Cap Sets

被引:4
|
作者
Tyrrell, Fred [1 ]
机构
[1] Univ Bristol, Fry Bldg, Bristol, England
关键词
cap sets; finite field; arithmetic progressions; SAT solver; SUBSETS;
D O I
10.19086/da.91076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A cap set is a subset of F-3(n) with no solutions to x + y + z = 0 other than when x = y = z. In this paper, we provide a new lower bound on the size of a maximal cap set. Building on a construction of Edel, we use improved computational methods and new theoretical ideas to show that, for large enough n, there is always a cap set in F-3(n) of size at least 2.218(n).
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [31] On the lower bounds of DNA word sets for DNA computing
    Wang, Bin
    Zhang, Qiang
    Wei, Xiaopeng
    2009 FOURTH INTERNATIONAL CONFERENCE ON BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PROCEEDINGS, 2009, : 384 - 388
  • [32] Lower bounds on the Hausdorff dimension of some Julia sets
    Dudko, Artem
    Gorbovickis, Igors
    Tucker, Warwick
    NONLINEARITY, 2023, 36 (05) : 2867 - 2893
  • [33] LOWER BOUNDS ON THE HAUSDORFF MEASURE OF NODAL SETS II
    Sogge, Christopher D.
    Zelditch, Steve
    MATHEMATICAL RESEARCH LETTERS, 2012, 19 (06) : 1361 - 1364
  • [34] Characterizing Sets of Lower Bounds: a Hidden Convexity Result
    Ernst, Emil
    Zaffaroni, Alberto
    SET-VALUED AND VARIATIONAL ANALYSIS, 2017, 25 (04) : 639 - 650
  • [35] LOWER BOUNDS FOR INTERIOR NODAL SETS OF STEKLOV EIGENFUNCTIONS
    Sogge, Christopher D.
    Wang, Xing
    Zhu, Jiuyi
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (11) : 4715 - 4722
  • [36] Lower and upper bounds for ω-limit sets of nonexpansive maps
    Lemmens, B
    Nussbaum, RD
    Lunel, SMV
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2001, 12 (02): : 191 - 211
  • [37] Lower Bounds for Nodal Sets of Dirichlet and Neumann Eigenfunctions
    Ariturk, Sinan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 317 (03) : 817 - 825
  • [38] Lower Bounds for Maximal Matchings and Maximal Independent Sets
    Balliu, Alkida
    Brandt, Sebastian
    Hirvonen, Juho
    Olivetti, Dennis
    Rabie, Mikael
    Suomela, Jukka
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 481 - 497
  • [39] Upper and lower bounds on the size of Bk[g] sets
    Johnston, Griffin
    Tait, Michael
    Timmons, Craig
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 83 : 129 - 140
  • [40] Dimensional lower bounds for contact surfaces of Cheeger sets
    Caroccia, M.
    Ciani, S.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 157 : 1 - 44