Strain and Exchange-Spring Mechanism of (1-x) Ni0.5Cu0.25Zn0.25Fe2O4 + (x) SrFe11Y1O19 Magnetically Soft-Hard Ferrite Composed Nanoparticles

被引:3
|
作者
Phase, Vidyasagar P. [1 ,2 ]
Kammar, Sharanabasappa S. [3 ]
Munnolli, Chandrashekhar S. [2 ]
Madansure, Yashwant S. [1 ]
Ibrahim, Ahmed A. [4 ]
Batoo, Khalid M. [4 ]
Kadam, Ram H. [1 ]
Shirsath, Sagar E. [5 ,6 ]
Shitre, Anil R. [2 ]
机构
[1] Shrikrishna Mahavidyalaya, Mat Sci Res Lab, Osmanabad 413613, MS, India
[2] Y C Coll, Dept Phys, Osmanabad 413602, MS, India
[3] HKEs A V Patil Degree Coll, Dept Phys, Kalburgi 585302, Karnataka, India
[4] King Saud Univ, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
[5] Vivekanand Coll, Dept Phys, Chatrapati Sambhajinagar 431001, MS, India
[6] Univ New South Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
关键词
coercivity; grain size; Rietveld refinement; saturation magnetization; soft-hard ferrite composites; DIELECTRIC-PROPERTIES; COUPLING INTERACTION; HEXAGONAL FERRITES; NANO; COMPOSITES; PARTICLES; SRFE12O19; MOSSBAUER; BEHAVIOR; FACILE;
D O I
10.1002/ppsc.202300225
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A mixture of soft-hard (S-H) ferrites with the general chemical formula (1-x) Ni0.5Cu0.25Zn0.25Fe2O4 (NCZFO) + (x) SrFe11Y1O19 (SFYO) is developed via sol-gel auto-combustion and their physical mixing. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, field emission scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy, high-resolution transmission electron microscopy (HRTEM), vibrating sample magnetometry (VSM) and two-probe technique are used to examine the resultant materials. Rietveld refinement of XRD data confirms the co-existence of both soft and hard phases in the composites. The HRTEM and FESEM results confirm the nanocrystalline nature of the synthesized particles. Williamson-Hall method is employed to reveal the strain nature in soft and hard phases. VSM analysis shows considerable changes in the magnetic characteristics for the different composition of NCZFO and SFYO. The exchange-spring mechanism is discussed in the manuscript.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Electrical and dielectric properties of rare earth substituted hard-soft ferrite (Co0.5Ni0.5Ga0.01Gd0.01Fe1.98O4)x/(ZnFe2O4)y nanocomposites
    Almessiere, M. A.
    Unal, B.
    Korkmaz, A. Demir
    Shirsath, Sagar E.
    Baykal, A.
    Slimani, Y.
    Gondal, M. A.
    Baig, U.
    Trukhanov, A., V
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 15 (15): : 969 - 983
  • [32] Magnetic and hyperfine properties of chemically synthesized nanocomposites of (Al2O3)x(Ni0.2Zn0.6Cu0.2Fe2O4)(1-x) (x=0.15, 0.30, 0.45)
    Chakrabarti, P. K.
    Nath, B. K.
    Brahma, S.
    Das, S.
    Das, D.
    Ammar, A.
    Mazaleyrat, F.
    SOLID STATE COMMUNICATIONS, 2007, 144 (7-8) : 305 - 309
  • [33] Magnetic and Mossbauer Effect Study of (Co0.5Zn0.4Cu0.1Fe2O4)(1-x)(Al2O3/PVA)x (x=0 and 0.30) Synthesized by Sonochemical Route
    Mukherjee, S.
    Das, D.
    Mukherjee, S.
    Chakrabarti, P. K.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (35): : 14763 - 14771
  • [34] Magnetic properties of (Co0.65Fe0.35)1-x(Ni0.5Zn0.5Fe2O4)x bi-magnetic composite granular films for high frequency application
    Chai, Guozhi
    Guo, Dangwei
    Li, Xiling
    Zhu, Jingyi
    Sui, Wenbo
    Xue, Desheng
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (20)
  • [35] Structural, electrical, magnetic and magnetoelectric properties of (1-y) [Ba0.6-xCaxSr0.4Zr0.25Ti0.75O3] + (y) [(Li0.5Fe0.5)0.4Ni0.18Cu0.12Zn0.3Fe2O4] composites
    Saha, S. K.
    Rahaman, Md. D.
    Zubair, M. A.
    Hossain, A. K. M. Akther
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 698 : 341 - 356
  • [36] Synthesis and characterization of magnetic nanoparticles Zn1-xMgxFe2O4 with partial substitution of Mg2+ (x=0.0, 0.25, 0.5, 0.75 and 1.0) for adsorption of uremic toxins
    Reyes-Rodriguez, P. Y.
    Avila-Orta, C. A.
    Andrade-Guel, M.
    Cortes-Hernandez, D. A.
    Herrera-Guerrero, A.
    Cabello-Alvarado, C.
    Sanchez-Fuentes, J.
    Ramos-Martinez, V. H.
    Valdez-Garza, J. A.
    Hurtado-Lopez, G. F.
    CERAMICS INTERNATIONAL, 2020, 46 (18) : 27913 - 27921
  • [37] Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics
    Li, Wenchuan
    Wu, Heng
    Ao, Hong
    Zeng, Zhixin
    Gao, Rongli
    Cai, Wei
    Fu, Chunlin
    Deng, Xiaoling
    Chen, Gang
    Wang, Zhenhua
    Lei, Xiang
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2021, 127 (12):
  • [38] Dielectric, ferroelectric, magnetic and multiferroic properties of xNi0.15Cu0.25Zn0.6Fe2O4-(1-x)Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics
    Wenchuan Li
    Heng Wu
    Hong Ao
    Zhixin Zeng
    Rongli Gao
    Wei Cai
    Chunlin Fu
    Xiaoling Deng
    Gang Chen
    Zhenhua Wang
    Xiang Lei
    Applied Physics A, 2021, 127
  • [39] Structural, Dielectric and Magnetic Studies of (x) Mg0.2Cu0.3Zn0.5Fe2O4+ (1-x) Ba0.8Zr0.2TiO3
    Khader, S. Abdul
    Giridharan, N. V.
    Chaudhuri, Arka
    Sankarappa, T.
    INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015), 2016, 1728
  • [40] Preparation and Investigations of the Magnetoelectric Properties of (Ni0.5Zn0.5Fe2O4) x [(Na0.5Bi0.5)0.7Ba0.3TiO3]1-x (x=0.3, 0.5) Nanocomposite Ceramics for Magnetic Field Sensor Applications
    Das, Souvick
    Banerjee, Anupam
    Bhakta, Nupur
    Chakrabarti, P. K.
    ACS APPLIED NANO MATERIALS, 2024, 7 (01) : 205 - 217