INDECOMPOSABILITY OF THE BOUNDED DERIVED CATEGORIES OF BRILL-NOETHER VARIETIES

被引:0
|
作者
Lin, Xun [1 ]
Yu, Chenglong [2 ]
机构
[1] Tsinghua Univ, Yau Math Sci Ctr, Beijing, Peoples R China
[2] Tsinghua Univ, Yau Math Sci Ctr, Beijing, Peoples R China
关键词
D O I
10.1090/proc/16654
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the bounded derived category of coherent sheaves of the Brill -No ether variety Grd(C) parametrizing linear series of degree d and dimension r on a general smooth projective curve C is indecomposable when d <= g(C) - 1.
引用
收藏
页码:1457 / 1465
页数:9
相关论文
共 50 条
  • [21] Brill-Noether theory on Hirzebruch surfaces
    Costa, L.
    Miro-Roig, R. M.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (09) : 1612 - 1622
  • [22] Brill-Noether problems in higher dimensions
    Nakashima, Tohru
    FORUM MATHEMATICUM, 2008, 20 (01) : 145 - 161
  • [23] On the Brill-Noether problem for vector bundles
    Daskalopoulos, GD
    Wentworth, RA
    FORUM MATHEMATICUM, 1999, 11 (01) : 63 - 77
  • [24] Weak Brill-Noether for rational surfaces
    Coskun, Izzet
    Huizenga, Jack
    LOCAL AND GLOBAL METHODS IN ALGEBRAIC GEOMETRY, 2018, 712 : 81 - 104
  • [25] Brill-Noether generality of binary curves
    He, Xiang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (04): : 787 - 807
  • [26] Brill-Noether theory for cyclic covers
    Schwarz, Irene
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (10) : 2420 - 2430
  • [27] Brill-Noether theory on nodal curves
    Bhosle, Usha N.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2007, 18 (10) : 1133 - 1150
  • [28] Brill-Noether divisors for even genus
    Choi, Youngook
    Kim, Seonja
    Kim, Young Rock
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2014, 218 (08) : 1458 - 1462
  • [29] The Brill-Noether problem and Teixidor theorem
    Mercat, V
    MANUSCRIPTA MATHEMATICA, 1999, 98 (01) : 75 - 85
  • [30] CONSTRUCTING REDUCIBLE BRILL-NOETHER CURVES
    Larson, Eric
    DOCUMENTA MATHEMATICA, 2022, 27 : 1953 - 1983