Toward Accurate Thermal Modeling of Phase Change Material-Based Photonic Devices

被引:8
|
作者
Aryana, Kiumars [1 ]
Kim, Hyun Jung [1 ]
Popescu, Cosmin-Constantin [2 ]
Vitale, Steven [3 ]
Bae, Hyung Bin [4 ]
Lee, Taewoo [4 ]
Gu, Tian [2 ,5 ]
Hu, Juejun [2 ,5 ]
机构
[1] NASA, Langley Res Ctr, Hampton, VA 23681 USA
[2] MIT, Dept Mat & Sci Engn, Cambridge, MA 02139 USA
[3] MIT, Lincoln Lab, Lexington, MA 02421 USA
[4] Korea Adv Inst Sci & Technol, KAIST Anal Ctr, Daejeon 34141, South Korea
[5] MIT, Mat Res Lab, Cambridge, MA 02139 USA
基金
美国国家航空航天局;
关键词
amorphization; phase-change materials; temperature; thermal conductivity; CRYSTAL-GROWTH; THIN-FILMS; CONDUCTIVITY; CRYSTALLIZATION; GE2SB2TE5; SIZE;
D O I
10.1002/smll.202304145
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reconfigurable or programmable photonic devices are rapidly growing and have become an integral part of many optical systems. The ability to selectively modulate electromagnetic waves through electrical stimuli is crucial in the advancement of a variety of applications from data communication and computing devices to environmental science and space explorations. Chalcogenide-based phase-change materials (PCMs) are one of the most promising material candidates for reconfigurable photonics due to their large optical contrast between their different solid-state structural phases. Although significant efforts have been devoted to accurate simulation of PCM-based devices, in this paper, three important aspects which have often evaded prior models yet having significant impacts on the thermal and phase transition behavior of these devices are highlighted: the enthalpy of fusion, the heat capacity change upon glass transition, as well as the thermal conductivity of liquid-phase PCMs. The important topic of switching energy scaling in PCM devices, which also helps explain why the three above-mentioned effects have long been overlooked in electronic PCM memories but only become important in photonics, is further investigated. These findings offer insight to facilitate accurate modeling of PCM-based photonic devices and can inform the development of more efficient reconfigurable optics. The study identifies key parameters affecting temperature and phase distributions in chalcogenide-based phase-change materials (PCMs) during amorphization cycle: the enthalpy of fusion, the heat capacity, and thermal conductivity of the liquid phase. These findings offer insight to facilitate accurate modeling of PCM-based photonic devices and can inform the development of more efficient reconfigurable optics for large-scale applications.image
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Nanowires for 2D material-based photonic and optoelectronic devices
    Lee, Ha Young
    Kim, Sejeong
    NANOPHOTONICS, 2022, 11 (11) : 2571 - 2582
  • [12] Cost performance of encapsulated phase change material-based thermal energy storage systems
    Erregueragui, Zineb
    Tizliouine, Abdeslem
    Omari, Lhaj El Hachemi
    Chafi, Mohammed
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2022, 17 : 1353 - 1365
  • [13] Numerical modeling and experimental validation of a phase change material-based compact cascade cooling system for enhanced thermal management
    Kim, Su-Ho
    Heu, Chang Sung
    Kim, Dong Rip
    Kang, Seok-Won
    APPLIED THERMAL ENGINEERING, 2020, 164
  • [14] Assessment of a novel phase change material-based thermal caisson for geothermal heating and cooling
    Alavy, Masih
    Peiris, Michael
    Wang, Julie
    Rosen, Marc A.
    ENERGY CONVERSION AND MANAGEMENT, 2021, 234
  • [15] A machine learning methodology for the diagnosis of phase change material-based thermal management systems
    Anooj, G. Venkata Sai
    Marri, Girish Kumar
    Balaji, C.
    APPLIED THERMAL ENGINEERING, 2023, 222
  • [16] Phase change material-based building architecture for thermal management in residential and commercial establishments
    Pasupathy, A.
    Velraj, R.
    Seeniraj, R. V.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2008, 12 (01): : 39 - 64
  • [17] Effect of Asymmetric Fins on Thermal Performance of Phase Change Material-Based Thermal Energy Storage Unit
    Shaban, Muhammad
    Khan, Talha Irfan
    Anwar, Muhammad
    Alzaid, Meshal
    Alanazi, Rakan
    MATERIALS, 2023, 16 (07)
  • [18] Influence of fin shape design on thermal efficiency of phase change material-based thermal energy storage unit
    Cheriet, Nassira
    Benlekkam, Mohamed Lamine
    Kherris, Sahraoui
    ARCHIVE OF MECHANICAL ENGINEERING, 2024, 71 (02) : 189 - 211
  • [19] Investigation on Thermal Performance of a Novel Passive Phase Change Material-Based Fin Heat Exchanger
    Zhang, De-Xin
    Zhu, Chuan-Yong
    Gong, Liang
    Ding, Bin
    Xu, Ming-Hai
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2023, 15 (02)
  • [20] Theoretical and Experimental Modeling of Phase Change Material-Based Space Heating Using Solar Energy
    Vaidhyanathan, Ashwath
    Banker, N. D.
    INTERNATIONAL JOURNAL OF AIR-CONDITIONING AND REFRIGERATION, 2020, 28 (02)