CrusTome: a transcriptome database resource for large-scale analyses across Crustacea

被引:7
|
作者
Perez-Moreno, Jorge L. [1 ]
Kozma, Mihika T. [1 ]
DeLeo, Danielle M. [2 ]
Bracken-Grissom, Heather D. [2 ,3 ,4 ]
Durica, David S. [5 ]
Mykles, Donald L. [1 ]
机构
[1] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA
[2] Smithsonian Inst, Natl Museum Nat Hist, Dept Invertebrate Zool, Washington, DC 20560 USA
[3] Florida Int Univ, Dept Biol Sci, North Miami, FL 33181 USA
[4] Florida Int Univ, Inst Environm, North Miami, FL 33181 USA
[5] Univ Oklahoma, Dept Biol, Norman, OK 73019 USA
来源
G3-GENES GENOMES GENETICS | 2023年 / 13卷 / 07期
基金
美国国家科学基金会; 美国海洋和大气管理局;
关键词
Arthropoda; bioinformatics; BLAST; crustaceans; cryptochrome; phylogenetics; RNA-seq; RNA-SEQ; GRAND CHALLENGES; CRYPTOCHROME; ANNOTATION; PHOTOLYASE; GENOME; MODEL; RECOMMENDATIONS; APPROXIMATION; ALGORITHM;
D O I
10.1093/g3journal/jkad098
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Transcriptomes from nontraditional model organisms often harbor a wealth of unexplored data. Examining these data sets can lead to clarity and novel insights in traditional systems, as well as to discoveries across a multitude of fields. Despite significant advances in DNA sequencing technologies and in their adoption, access to genomic and transcriptomic resources for nontraditional model organisms remains limited. Crustaceans, for example, being among the most numerous, diverse, and widely distributed taxa on the planet, often serve as excellent systems to address ecological, evolutionary, and organismal questions. While they are ubiquitously present across environments, and of economic and food security importance, they remain severely underrepresented in publicly available sequence databases. Here, we present CrusTome, a multispecies, multitissue, transcriptome database of 201 assembled mRNA transcriptomes (189 crustaceans, 30 of which were previously unpublished, and 12 ecdysozoans for phylogenetic context) as an evolving and publicly available resource. This database is suitable for evolutionary, ecological, and functional studies that employ genomic/transcriptomic techniques and data sets. CrusTome is presented in BLAST and DIAMOND formats, providing robust data sets for sequence similarity searches, orthology assignments, phylogenetic inference, etc. and thus allowing for straightforward incorporation into existing custom pipelines for high-throughput analyses. In addition, to illustrate the use and potential of CrusTome, we conducted phylogenetic analyses elucidating the identity and evolution of the cryptochrome/photolyase family of proteins across crustaceans.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Shape and electrostatic similarity across a large-scale database of vendor-available compounds.
    Tolbert, R
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U777 - U777
  • [32] Systematical analyses of large-scale transcriptome reveal viral infection-related genes and disease comorbidities
    Guo, Jing
    Zhang, Ya
    Gao, Yueying
    Li, Si
    Xu, Gang
    Tian, Zhanyu
    Xu, Qi
    Li, Xia
    Li, Yongsheng
    Zhang, Yunpeng
    ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY, 2023, 51 (01) : 453 - 465
  • [33] Large-scale transcriptome analyses reveal new genetic marker candidates of head, neck, and thyroid cancer
    Reis, EM
    Ojopi, EPB
    Alberto, FL
    Rahal, P
    Tsukumo, F
    Mancini, UM
    Guimaraes, GS
    Thompson, GMA
    Camacho, C
    Miracca, E
    Carvalho, AL
    Machado, AA
    Paquola, ACM
    Cerutti, JM
    da Silva, AM
    Pereira, GG
    Valentini, SR
    Nagai, MA
    Kowalski, LP
    Verjovski-Almeida, S
    Tajara, EH
    Dias-Neto, E
    Bengtson, MH
    Canevari, RA
    Carazzolle, MF
    Colin, C
    Costa, FF
    Costa, MC
    Estécio, MR
    Esteves, LI
    Federico, MH
    Guimaraes, PE
    Hackel, C
    Kimura, ET
    Leoni, SG
    Maciel, RM
    Maistro, S
    Mangone, FR
    Massirer, KB
    Matsuo, SE
    Nobrega, FG
    Nóbrega, MP
    Nunes, DN
    Nunes, F
    Pandolfi, JR
    Pardini, MI
    Pasini, FS
    Peres, T
    Rainho, CA
    Dos Reis, PP
    CANCER RESEARCH, 2005, 65 (05) : 1693 - 1699
  • [34] Analyses of transcriptome sequences reveal multiple ancient large-scale duplication events in the ancestor of Sphagnopsida (Bryophyta)
    Devos, Nicolas
    Szovenyi, Peter
    Weston, David J.
    Rothfels, Carl J.
    Johnson, Matthew G.
    Shaw, A. Jonathan
    NEW PHYTOLOGIST, 2016, 211 (01) : 300 - 318
  • [35] MapReduce for Large-scale Monitor Data Analyses
    Ding, Jianwei
    Liu, Yingbo
    Zhang, Li
    Wang, Jianmin
    2014 IEEE 13TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM), 2014, : 747 - 754
  • [36] DOCUMENTING LARGE-SCALE TELECOMMUNICATIONS COMPUTER ANALYSES
    KONCZAL, EF
    JOURNAL OF SYSTEMS MANAGEMENT, 1978, 29 (06): : 14 - 17
  • [37] AFFINOMICS and the prospects for large-scale protein analyses
    Landegren, Ulf
    NEW BIOTECHNOLOGY, 2016, 33 (05) : 491 - 493
  • [38] Large-scale sequence analyses of Atlantic cod
    Johansen, Steinar D.
    Coucheron, Dag H.
    Andreassen, Morten
    Karlsen, Bard Ove
    Furmanek, Tomasz
    Jorgensen, Tor Erik
    Emblem, Ase
    Breines, Ragna
    Nordeide, Jarle T.
    Moum, Truls
    Nederbragt, Alexander J.
    Stenseth, Nils C.
    Jakobsen, Kjetill S.
    NEW BIOTECHNOLOGY, 2009, 25 (05) : 263 - 271
  • [39] Comparative transcriptome in large-scale human and cattle populations
    Yuelin Yao
    Shuli Liu
    Charley Xia
    Yahui Gao
    Zhangyuan Pan
    Oriol Canela-Xandri
    Ava Khamseh
    Konrad Rawlik
    Sheng Wang
    Bingjie Li
    Yi Zhang
    Erola Pairo-Castineira
    Kenton D’Mellow
    Xiujin Li
    Ze Yan
    Cong-jun Li
    Ying Yu
    Shengli Zhang
    Li Ma
    John B. Cole
    Pablo J. Ross
    Huaijun Zhou
    Chris Haley
    George E. Liu
    Lingzhao Fang
    Albert Tenesa
    Genome Biology, 23
  • [40] Comparative transcriptome in large-scale human and cattle populations
    Yao, Yuelin
    Liu, Shuli
    Xia, Charley
    Gao, Yahui
    Pan, Zhangyuan
    Canela-Xandri, Oriol
    Khamseh, Ava
    Rawlik, Konrad
    Wang, Sheng
    Li, Bingjie
    Zhang, Yi
    Pairo-Castineira, Erola
    D'Mellow, Kenton
    Li, Xiujin
    Yan, Ze
    Li, Cong-jun
    Yu, Ying
    Zhang, Shengli
    Ma, Li
    Cole, John B.
    Ross, Pablo J.
    Zhou, Huaijun
    Haley, Chris
    Liu, George E.
    Fang, Lingzhao
    Tenesa, Albert
    GENOME BIOLOGY, 2022, 23 (01)