RelativeNAS: Relative Neural Architecture Search via Slow-Fast Learning

被引:29
|
作者
Tan, Hao [1 ]
Cheng, Ran [1 ]
Huang, Shihua [1 ]
He, Cheng [1 ]
Qiu, Changxiao [2 ]
Yang, Fan [2 ]
Luo, Ping [3 ]
机构
[1] Southern Univ Sci & Technol, Univ Key Lab Evolving Intelligent Syst Guangdong, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
[2] Huawei Technol Co Ltd, Hisilicon Res Dept, Shenzhen 518055, Peoples R China
[3] Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Computer architecture; Statistics; Sociology; Search problems; Optimization; Neural networks; Estimation; AutoML; convolutional neural network (CNN); neural architecture search (NAS); population-based search; slow-fast learning; NETWORKS;
D O I
10.1109/TNNLS.2021.3096658
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the remarkable successes of convolutional neural networks (CNNs) in computer vision, it is time-consuming and error-prone to manually design a CNN. Among various neural architecture search (NAS) methods that are motivated to automate designs of high-performance CNNs, the differentiable NAS and population-based NAS are attracting increasing interests due to their unique characters. To benefit from the merits while overcoming the deficiencies of both, this work proposes a novel NAS method, RelativeNAS. As the key to efficient search, RelativeNAS performs joint learning between fast learners (i.e., decoded networks with relatively lower loss value) and slow learners in a pairwise manner. Moreover, since RelativeNAS only requires low-fidelity performance estimation to distinguish each pair of fast learner and slow learner, it saves certain computation costs for training the candidate architectures. The proposed RelativeNAS brings several unique advantages: 1) it achieves state-of-the-art performances on ImageNet with top-1 error rate of 24.88%, that is, outperforming DARTS and AmoebaNet-B by 1.82% and 1.12%, respectively; 2) it spends only 9 h with a single 1080Ti GPU to obtain the discovered cells, that is, 3.75x and 7875x faster than DARTS and AmoebaNet, respectively; and 3) it provides that the discovered cells obtained on CIFAR-10 can be directly transferred to object detection, semantic segmentation, and keypoint detection, yielding competitive results of 73.1% mAP on PASCAL VOC, 78.7% mIoU on Cityscapes, and 68.5% AP on MSCOCO, respectively. The implementation of RelativeNAS is available at https://github.com/EMI-Group/RelativeNAS.
引用
收藏
页码:475 / 489
页数:15
相关论文
共 50 条
  • [41] Proxy Data Generation for Fast and Efficient Neural Architecture Search
    Park, Minje
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 18 (03) : 2307 - 2316
  • [42] Efficient Neural Architecture Search via Parameter Sharing
    Pham, Hieu
    Guan, Melody Y.
    Zoph, Barret
    Le, Quoc, V
    Dean, Jeff
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [43] Neural architecture search via similarity adaptive guidance
    Xue, Yu
    Zha, Jiajie
    Wahib, Mohamed
    Ouyang, Tinghui
    Wang, Xiao
    APPLIED SOFT COMPUTING, 2024, 162
  • [44] FP-NAS: Fast Probabilistic Neural Architecture Search
    Yan, Zhicheng
    Dai, Xiaoliang
    Zhang, Peizhao
    Tian, Yuandong
    Wu, Bichen
    Feiszli, Matt
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 15134 - 15143
  • [45] Fast Filter Pruning via Coarse-to-Fine Neural Architecture Search and Contrastive Knowledge Transfer
    Lee, Seunghyun
    Song, Byung Cheol
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (07) : 9674 - 9685
  • [46] Efficient spiking neural network design via neural architecture search
    Yan, Jiaqi
    Liu, Qianhui
    Zhang, Malu
    Feng, Lang
    Ma, De
    Li, Haizhou
    Pan, Gang
    NEURAL NETWORKS, 2024, 173
  • [47] Automated Deep Learning: Neural Architecture Search Is Not the End
    Dong, Xuanyi
    Kedziora, David Jacob
    Musial, Katarzyna
    Gabrys, Bogdan
    FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2024, 17 (05): : 767 - 920
  • [48] Learning deep morphological networks with neural architecture search
    Hu, Yufei
    Belkhir, Nacim
    Angulo, Jesus
    Yao, Angela
    Franchi, Gianni
    PATTERN RECOGNITION, 2022, 131
  • [49] Reinforcement Learning for Neural Architecture Search in Hyperspectral Unmixing
    Han, Zhu
    Hong, Danfeng
    Gao, Lianru
    Roy, Swalpa Kumar
    Zhang, Bing
    Chanussot, Jocelyn
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [50] Multimodal Continual Graph Learning with Neural Architecture Search
    Cai, Jie
    Wang, Xin
    Guan, Chaoyu
    Tang, Yateng
    Xu, Jin
    Zhong, Bin
    Zhu, Wenwu
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 1292 - 1300