Revisiting the Serviceability of Long-Span Bridges under Vortex-Induced Vibrations Based on Human Body Vibration

被引:2
|
作者
Qin, Jingxi [1 ]
Zhu, Jin [2 ,3 ]
Li, Han [2 ]
Xiong, Ziluo [2 ]
Li, Yongle [2 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA
[2] Southwest Jiaotong Univ, Dept Bridge Engn, Chengdu 610031, Sichuan, Peoples R China
[3] Southwest Jiaotong Univ, State Key Lab Bridge Intelligent & Green Construct, Chengdu 611756, Sichuan, Peoples R China
来源
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
D O I
10.1155/2024/9933060
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Vortex-induced vibrations (VIVs) have been frequently observed on long-span bridges (LSBs) in recent years. Unlike other destructive aerodynamic phenomena of LSBs, VIVs are self-limited in amplitude, primarily affecting the serviceability of LSBs through unpleasant users' feelings characterized by human body vibration. Most existing studies discussed this issue based on a popular human body vibration measure, the human comfort index (HCI) in ISO 2631-1. However, the HCI is primarily concerned with vibration above 0.5 Hz, which might be unsuitable for disclosing the influence of VIV because of the low-frequency features of LSBs' VIVs. To address this limitation, this study advocates using the motion sickness index (MSI) to revisit the serviceability of LSBs experiencing VIVs based on an innovative wind-traffic-bridge simulation platform. Different from current studies exclusively focusing on vehicle riders, this paper additionally incorporates a vibration model for standing persons to understand the feelings of the pedestrians on the bridge. On this basis, the influence of VIV and traffic load is comprehensively examined. The results indicate that the HCI is inappropriate for exploring the serviceability of LSBs under VIVs regarding users' feelings, but the MSI is a good alternative. Moreover, the increasing traffic load can obviously mitigate the adverse effect of VIVs on the bridge's serviceability, which may be utilized to control VIVs of LSBs in real-world engineering practice.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] VORTEX-INDUCED VIBRATIONS OF LONG-SPAN CONTINUOUS BRIDGES WITH STEEL TRUSS-STIFFENED BOX-GIRDER
    Zhou T.
    Deng Y.
    Chen X.-H.
    Wang W.-X.
    Zhou M.-X.
    Hua X.-G.
    Chen Z.-Q.
    Gongcheng Lixue/Engineering Mechanics, 2023, 40 (02): : 213 - 221
  • [22] Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge
    Li, Hui
    Laima, Shujin
    Zhang, Qiangqiang
    Li, Na
    Liu, Zhiqiang
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2014, 124 : 54 - 67
  • [23] Characteristic parameter analysis for identification of vortex-induced vibrations of a long-span bridge
    Guo, Jian
    Shen, Yufeng
    Weng, Bowen
    Zhong, Chenjie
    JOURNAL OF CIVIL STRUCTURAL HEALTH MONITORING, 2025, 15 (01) : 127 - 150
  • [24] Vortex-Induced Vibration Performance Analysis of Long-Span Sea-Crossing Bridges Using Unsupervised Clustering
    Chen, Tao
    Wu, Yi-Lun
    Yang, Xiao-Mei
    Yang, Shu-Han
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (10)
  • [25] Experimental Investigation on Vortex-Induced Vibration Mitigation of Stay Cables in Long-Span Bridges Equipped with Damped Crossties
    Liu, Min
    Yang, Wenhan
    Chen, Wenli
    Xiao, Huigang
    Li, Hui
    JOURNAL OF AEROSPACE ENGINEERING, 2019, 32 (05)
  • [26] Mode competition of the vortex-induced vibration for the long-span bridges with the closely-spaced multi-modes
    Cui, Wei
    Zhang, Liutian
    Zhao, Lin
    NONLINEAR DYNAMICS, 2025, : 8071 - 8084
  • [27] Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study
    Xu, Kun
    Bi, Kaiming
    Han, Qiang
    Li, Xiaopeng
    Du, Xiuli
    ENGINEERING STRUCTURES, 2019, 182 : 101 - 111
  • [28] Discrete viscous dampers for multi-mode vortex-induced vibration control of long-span suspension bridges
    Cao, Yiwen
    Huang, Zhiwen
    Zhang, Hongyi
    Hua, Xugang
    Chen, Zhengqing
    Wan, Tianbao
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2023, 243
  • [29] Calculation of spanwise vortex-induced vibration responses of long-span bridge girder
    Research Center of Wind Eng., Southwest Jiaotong University, Chengdu 610031, China
    Xinan Jiaotong Daxue Xuebao, 2008, 6 (740-746): : 740 - 746
  • [30] Prediction analysis of vortex-induced vibration of long-span suspension bridge based on monitoring data
    Xu, Shiqiao
    Ma, Rujin
    Wang, Dalei
    Chen, Airong
    Tian, Hao
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2019, 191 : 312 - 324