Water/Light Multiregulated Supramolecular Polypseudorotaxane Gel with Switchable Room-Temperature Phosphorescence

被引:4
|
作者
Liu, Songen
Zhang, Yi [1 ]
Li, Jianqiu [1 ]
Wang, Conghui [1 ]
Chen, Yong [1 ]
Liu, Yu [1 ]
机构
[1] Nankai Univ, Coll Chem, State Key Lab Elemento Organ Chem, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
supramolecular polypseudorotaxane; room-temperaturephosphorescence; multistimulus response; cyclodextrin; multicolor materials;
D O I
10.1021/acsami.3c17214
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Water/light regulated room-temperature phosphorescence (RTP) of polypseudorotaxane supramolecular gel is constructed by threading the poly-(ethylene glycol)-block-poly-(propylene glycol)-block-poly-(ethylene glycol) (PEG-PPG-PEG) chain with the bromoaromatic aldehyde into mono-(6-ethylenediamine-6-deoxygenated)-beta-cyclodextrin (ECD) cavities and further assembling with negatively charged Laponite XLG (CNS) and diarylethene derivative (DAE) through electrostatic interaction. This hydrogel exhibits significant blue fluorescence emission; instead, after lyophilization to xerogel, the system exhibits both blue fluorescence and yellow RTP based on the rigid network structure of the xerogel, which restricts the vibration of the phosphor and suppresses the nonradiative relaxation process. Interestingly, the addition of excess ECDs to the gel system can enhance the RTP emission. Furthermore, the reversible luminescence behavior can be adjusted by the photoresponsive isomerism of DAE and humidity. This polypseudorotaxane supramolecular gel system provides a novel strategy for constructing tunable RTP materials.
引用
收藏
页码:5149 / 5157
页数:9
相关论文
共 50 条
  • [31] In situ supramolecular assembly in water for dual room temperature phosphorescence and multicomponent recognition
    Chen, Zhong-Yuan
    Xia, Qing-Qing
    Zhu, Yu-Qi
    Yu, Jia-Lin
    Wang, Lu
    Wang, Xing-Huo
    Wu, Ming-Xue
    POLYMER CHEMISTRY, 2024, 15 (07) : 652 - 660
  • [33] Reversible room-temperature phosphorescence in response to light stimulation based on a photochromic copolymer
    Ding, Bingbing
    Gao, Hao
    Wang, Chao
    Ma, Xiang
    CHEMICAL COMMUNICATIONS, 2021, 57 (25) : 3154 - 3157
  • [34] MATRIX EFFECT ON LIFETIME OF ROOM-TEMPERATURE PHOSPHORESCENCE
    NIDAY, GJ
    SEYBOLD, PG
    ANALYTICAL CHEMISTRY, 1978, 50 (11) : 1577 - 1578
  • [35] REDUCTION OF BACKGROUND EMISSION IN ROOM-TEMPERATURE PHOSPHORESCENCE
    MCALEESE, DL
    DUNLAP, RB
    ANALYTICAL CHEMISTRY, 1984, 56 (03) : 600 - 601
  • [36] AN EVALUATION OF CELLULOSE AS A SUBSTRATE FOR ROOM-TEMPERATURE PHOSPHORESCENCE
    BATEH, RP
    WINEFORDNER, JD
    TALANTA, 1982, 29 (08) : 713 - 717
  • [37] Solid-phase room-temperature phosphorescence
    Hurtubise, RJ
    Thompson, AL
    Hubbard, SE
    ANALYTICAL LETTERS, 2005, 38 (12) : 1823 - 1845
  • [38] Organic supramolecular room-temperature phosphorescence featuring profound dependence on host–guest binding behaviors
    Chunhui Li
    Qichao Guo
    Jinkang Zhu
    Qiaochun Wang
    Research on Chemical Intermediates, 2023, 49 : 2755 - 2768
  • [39] Chaperone Mimetic Strategy for Achieving Organic Room-Temperature Phosphorescence based on Confined Supramolecular Assembly
    Zuo, Minzan
    Li, Tinghan
    Feng, Haohui
    Wang, Kaiya
    Zhao, Yue
    Wang, Leyong
    Hu, Xiao-Yu
    SMALL, 2024, 20 (02)
  • [40] Construction of a room-temperature phosphorescence system by cucurbit[8]uril-based supramolecular assembly
    Chen, Yuhe
    Yang, Jingsha
    Zhang, Shuai
    Xi, Zeng
    Luo, Heng
    JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMISTRY, 2022, 102 (5-6) : 429 - 437