Generalized finite integration method with Volterra Operator for pricing multi-asset barrier option

被引:1
|
作者
Ma, Y. [1 ]
Sam, C. N. [1 ,4 ]
Hon, Jeffrey M. H. [2 ,3 ,4 ]
机构
[1] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China
[3] NVIDIA, NVIDIA Technol Ctr NVAITC, Santa Clara, CA USA
[4] OptBeacon Consultancy Ltd, Hong Kong, Peoples R China
关键词
Generalized finite integration method; Volterra operator; Barrier option; Crank-Nicolson; RADIAL-BASIS-FUNCTION; VALUATION;
D O I
10.1016/j.enganabound.2023.06.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate in this paper the pricing of European-style barrier options under the Black-Scholes model. Based on the recently developed Generalized Finite Integration Method with Volterra operator (GFIM-V), we apply the Crank-Nicolson scheme to treat the time variable in the governing Black-Scholes equation for pricing multi -asset barrier options. For verification on the accuracy and efficiency of the proposed approach, we construct several numerical experiments for the solutions of multi-asset barrier option prices with various time step sizes and number of spatial nodal points. Comparisons with available exact solution and existing spectral convergent method indicate the advantages of the GFIM-V method in superior accuracy and unconditional stability.
引用
收藏
页码:850 / 860
页数:11
相关论文
共 50 条
  • [21] Pricing multi-asset American option under Heston stochastic volatility model
    Samimi, Oldouz
    Mehrdoust, Farshid
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2018, 5 (03)
  • [22] A Monte Carlo multi-asset option pricing approximation for general stochastic processes
    Arismendi, Juan
    De Genaro, Alan
    CHAOS SOLITONS & FRACTALS, 2016, 88 : 75 - 99
  • [23] Data-Driven Option Pricing using Single and Multi-Asset Supervised
    Goswami, Anindya
    Rajani, Sharan
    Tanksale, Atharva
    arXiv, 2020,
  • [24] Parallel computing method of valuing for multi-asset European option
    Zheng, WM
    Shu, JW
    Deng, XT
    Gu, YG
    COMPUTATIONAL SCIENCE - ICCS 2003, PT II, PROCEEDINGS, 2003, 2658 : 3 - 9
  • [25] Parallel computing method of valuing for multi-asset European option
    Zheng, WM
    Shu, JW
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2004, 3 (04) : 575 - 581
  • [26] Numerical Solution of Multi-Asset Option Pricing Problems Using an Improved RBF-DQ Method
    Khodayari, Leila
    Ranjbar, Mojtaba
    CHIANG MAI JOURNAL OF SCIENCE, 2017, 44 (04): : 1735 - 1743
  • [27] Pricing multi-asset american options: A finite element method-of-lines with smooth penalty
    Kovalov, Pavlo
    Linetsky, Vadim
    Marcozzi, Michael
    JOURNAL OF SCIENTIFIC COMPUTING, 2007, 33 (03) : 209 - 237
  • [28] Radial basis function partition of unity operator splitting method for pricing multi-asset American options
    Shcherbakov, Victor
    BIT NUMERICAL MATHEMATICS, 2016, 56 (04) : 1401 - 1423
  • [29] Radial basis function partition of unity operator splitting method for pricing multi-asset American options
    Victor Shcherbakov
    BIT Numerical Mathematics, 2016, 56 : 1401 - 1423
  • [30] Pricing Multi-Asset American Options: A Finite Element Method-of-Lines with Smooth Penalty
    Pavlo Kovalov
    Vadim Linetsky
    Michael Marcozzi
    Journal of Scientific Computing, 2007, 33 : 209 - 237