Machine learning-based water quality prediction using octennial in-situ Daphnia magna biological early warning system data

被引:14
|
作者
Jeong, Heewon [1 ]
Park, Sanghyun [2 ]
Choi, Byeongwook [3 ]
Yu, Chung Seok [2 ]
Hong, Ji Young [2 ]
Jeong, Tae-Yong [3 ]
Cho, Kyung Hwa [4 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Dept Urban & Environm Engn, UNIST Gil 50, Ulsan 44919, South Korea
[2] Natl Inst Environm Res, 42 Hwangyeong Ro,Seo Gu, Incheon 22689, South Korea
[3] Hankuk Univ Foreign Studies, Dept Environm Sci, Oedae Ro 81, Yongin 17035, Gyeonggi Do, South Korea
[4] Korea Univ, Sch Civil Environm & Architectural Engn, Seoul 02841, South Korea
关键词
Biological early warning system; Machine learning models; Water quality; Explainable models; Daphnia magna; INDICATOR BACTERIA; SWIMMING BEHAVIOR; TOXICITY; FILTRATION;
D O I
10.1016/j.jhazmat.2023.133196
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biological early warning system (BEWS) has been globally used for surface water quality monitoring. Despite its extensive use, BEWS has exhibited limitations, including difficulties in biological interpretation and low alarm reproducibility. This study addressed these issues by applying machine learning (ML) models to eight years of in-situ BEWS data for Daphnia magna. Six ML models were adopted to predict contamination alarms from Daphnia behavioral parameters. The light gradient boosting machine model demonstrated the most significant improvement in predicting alarms from Daphnia behaviors. Compared with the traditional BEWS alarm index, the ML model enhanced the precision and recall by 29.50% and 43.41%, respectively. The speed distribution index and swimming speed were significant parameters for predicting water quality warnings. The nonlinear relationships between the monitored Daphnia behaviors and water physicochemical water quality parameters (i. e., flow rate, Chlorophyll-a concentration, water temperature, and conductivity) were identified by ML models for simulating Daphnia behavior based on the water contaminants. These findings suggest that ML models have the potential to establish a robust framework for advancing the predictive capabilities of BEWS, providing a promising avenue for real-time and accurate assessment of water quality. Thereby, it can contribute to more proactive and effective water quality management strategies.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Machine Learning-Based Prediction of Cattle Activity Using Sensor-Based Data
    Hernandez, Guillermo
    Gonzalez-Sanchez, Carlos
    Gonzalez-Arrieta, Angelica
    Sanchez-Brizuela, Guillermo
    Fraile, Juan-Carlos
    SENSORS, 2024, 24 (10)
  • [22] Machine Learning-Based Cellular Traffic Prediction Using Data Reduction Techniques
    Nashaat, Heba
    Mohammed, Nihal H.
    Abdel-Mageid, Salah M.
    Rizk, Rawya Y.
    IEEE ACCESS, 2024, 12 : 58927 - 58939
  • [23] Machine Learning-Based Prediction of Hemoglobinopathies Using Complete Blood Count Data
    Schipper, Anoeska
    Rutten, Matthieu
    van Gammeren, Adriaan
    Harteveld, Cornelis L.
    Urrechaga, Eloisa
    Weerkamp, Floor
    den Besten, Gijs
    Krabbe, Johannes
    Slomp, Jennichjen
    Schoonen, Lise
    Broeren, Maarten
    van Wijnen, Merel
    Huijskens, Mirelle J. A. J.
    Koopmann, Tamara
    van Ginneken, Bram
    Kusters, Ron
    Kurstjens, Steef
    CLINICAL CHEMISTRY, 2024, 70 (08) : 1064 - 1075
  • [24] Machine learning-based prediction of diabetic patients using blood routine data
    Li, Honghao
    Su, Dongqing
    Zhang, Xinpeng
    He, Yuanyuan
    Luo, Xu
    Xiong, Yuqiang
    Zou, Min
    Wei, Huiyan
    Wen, Shaoran
    Xi, Qilemuge
    Zuo, Yongchun
    Yang, Lei
    METHODS, 2024, 229 : 156 - 162
  • [25] Machine learning-based colorectal cancer prediction using global dietary data
    Abdul Rahman, Hanif
    Ottom, Mohammad Ashraf
    Dinov, Ivo D.
    BMC CANCER, 2023, 23 (01)
  • [26] Machine learning-based colorectal cancer prediction using global dietary data
    Hanif Abdul Rahman
    Mohammad Ashraf Ottom
    Ivo D. Dinov
    BMC Cancer, 23
  • [27] Earthquake Early Warning System for Structural Drift Prediction Using Machine Learning and Linear Regressors
    Iaccarino, Antonio Giovanni
    Gueguen, Philippe
    Picozzi, Matteo
    Ghimire, Subash
    FRONTIERS IN EARTH SCIENCE, 2021, 9
  • [28] Cloud-based in-situ battery life prediction and classification using machine learning
    Zhang, Yongzhi
    Zhao, Mingyuan
    ENERGY STORAGE MATERIALS, 2023, 57 : 346 - 359
  • [29] Deep learning-based retrieval of cyanobacteria pigment in inland water for in-situ and airborne hyperspectral data
    Yim, Inhyeok
    Shin, Jihoon
    Lee, Hyuk
    Park, Sanghyun
    Nam, Gibeom
    Kang, Taegu
    Cho, Kyung Hwa
    Cha, YoonKyung
    ECOLOGICAL INDICATORS, 2020, 110
  • [30] Preoperative prediction for early recurrence of hepatocellular carcinoma using machine learning-based radiomics
    Mao, Bing
    Ren, Yajun
    Yu, Xuan
    Liang, Xinliang
    Ding, Xiangming
    FRONTIERS IN ONCOLOGY, 2024, 14