One-Week-Ahead Prediction of Cyanobacterial Harmful Algal Blooms in Iowa Lakes

被引:3
|
作者
Villanueva, Paul [1 ]
Yang, Jihoon [1 ]
Radmer, Lorien [1 ]
Liang, Xuewei [2 ]
Leung, Tania [3 ]
Ikuma, Kaoru [2 ]
Swanner, Elizabeth D. [3 ]
Howe, Adina [1 ]
Lee, Jaejin [1 ]
机构
[1] Iowa State Univ, Dept Agr & Biosyst Engn, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Civil Construct & Environm Engn, Ames, IA 50011 USA
[3] Iowa State Univ, Dept Geol & Atmospher Sci, Ames, IA 50011 USA
关键词
cyanobacterial harmful algal blooms; microcystin concentration; predictive modeling; freshwater lakes; environmentalmonitoring; classification models; class imbalance; neural network; XGBoost; logistic regression; CLIMATE-CHANGE; WATER-QUALITY; RESERVOIRS; EUTROPHICATION; MODELS; MICROCYSTIS; PHYCOCYANIN; DYNAMICS; IMPACTS; INPUT;
D O I
10.1021/acs.est.3c07764
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cyanobacterial harmful algal blooms (CyanoHABs) pose serious risks to inland water resources. Despite advancements in our understanding of associated environmental factors and modeling efforts, predicting CyanoHABs remains challenging. Leveraging an integrated water quality data collection effort in Iowa lakes, this study aimed to identify factors associated with hazardous microcystin levels and develop one-week-ahead predictive classification models. Using water samples from 38 Iowa lakes collected between 2018 and 2021, feature selection was conducted considering both linear and nonlinear properties. Subsequently, we developed three model types (Neural Network, XGBoost, and Logistic Regression) with different sampling strategies using the nine selected variables (mcyA_M, TKN, % hay/pasture, pH, mcyA_M:16S, % developed, DOC, dewpoint temperature, and ortho-P). Evaluation metrics demonstrated the strong performance of the Neural Network with oversampling (ROC-AUC 0.940, accuracy 0.861, sensitivity 0.857, specificity 0.857, LR+ 5.993, and 1/LR- 5.993), as well as the XGBoost with downsampling (ROC-AUC 0.944, accuracy 0.831, sensitivity 0.928, specificity 0.833, LR+ 5.557, and 1/LR- 11.569). This study exhibited the intricacies of modeling with limited data and class imbalances, underscoring the importance of continuous monitoring and data collection to improve predictive accuracy. Also, the methodologies employed can serve as meaningful references for researchers tackling similar challenges in diverse environments.
引用
收藏
页码:20636 / 20646
页数:11
相关论文
共 50 条
  • [31] Mechanisms and prediction of occurrences of harmful algal blooms in coastal sea
    Imai, Ichiro
    Yamaguchi, Mineo
    Matsuoka, Kazumi
    NIPPON SUISAN GAKKAISHI, 2011, 77 (03) : 438 - 443
  • [32] Environmental Studies of Cyanobacterial Harmful Algal Blooms Should Include Interactions with the Dynamic Microbiome
    Pound, Helena L.
    Martin, Robbie M.
    Sheik, Cody S.
    Steffen, Morgan M.
    Newell, Silvia E.
    Dick, Gregory J.
    McKay, R. Michael L.
    Bullerjahn, George S.
    Wilhelm, Steven W.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (19) : 12776 - 12779
  • [33] Cyanobacterial harmful algal blooms are a biological disturbance to Western Lake Erie bacterial communities
    Berry, Michelle A.
    Davis, Timothy W.
    Cory, Rose M.
    Duhaime, Melissa B.
    Johengen, Thomas H.
    Kling, George W.
    Marino, John A.
    Den Uyl, Paul A.
    Gossiaux, Duane
    Dick, Gregory J.
    Denef, Vincent J.
    ENVIRONMENTAL MICROBIOLOGY, 2017, 19 (03) : 1149 - 1162
  • [34] Effective aerial monitoring of cyanobacterial harmful algal blooms is dependent on understanding cellular migration
    Qu, Mingzhi
    Anderson, Stephen
    Lyu, Pin
    Malang, Yasir
    Lai, Jizhou
    Liu, Jianye
    Jiang, Bin
    Xie, Feng
    Liu, Hugh H. T.
    Lefebvre, Daniel D.
    Wang, Yuxiang S.
    HARMFUL ALGAE, 2019, 87
  • [35] An introduction to the 'micronet' of cyanobacterial harmful algal blooms (CyanoHABs): cyanobacteria, zooplankton and microorganisms: a review
    Wilk-Wozniak, Elzbieta
    MARINE AND FRESHWATER RESEARCH, 2020, 71 (05) : 636 - 643
  • [36] Microbial diversity, genomics, and phage-host interactions of cyanobacterial harmful algal blooms
    Krausfeldt, Lauren E.
    Shmakova, Elizaveta
    Lee, Hyo Won
    Mazzei, Viviana
    Loftin, Keith A.
    Smith, Robert P.
    Karwacki, Emily
    Fortman, P. Eric
    Rosen, Barry H.
    Urakawa, Hidetoshi
    Dadlani, Manoj
    Colwell, Rita R.
    Lopez, Jose V.
    MSYSTEMS, 2024, 9 (07)
  • [37] Spatiotemporal variation of cyanobacterial harmful algal blooms in China based on literature and media information
    Du, Yichen
    Wang, Chen
    Wang, Mengqiu
    Zhao, Huan
    Yan, Kai
    Mu, Yunchang
    Zhang, Wenzhi
    Zhang, Fangfang
    Wang, Shenglei
    Li, Junsheng
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2023, 16 (01) : 3905 - 3922
  • [38] Chapter 12: Watershed management strategies to prevent and control cyanobacterial harmful algal blooms
    Piehler, Michael F.
    CYANOBACTERIAL HARMFUL ALGAL BLOOMS: STATE OF THE SCIENCE AND RESEARCH NEEDS, 2008, 619 : 259 - 273
  • [39] Detection of Aerosolized Anabaenopeptins from Cyanobacterial Harmful Algal Blooms in Atmospheric Particulate Matter
    Shi, Jia H.
    Birbeck, Johnna A.
    Olson, Nicole E.
    Parham, Rebecca L.
    Holen, Andrew L.
    Ledsky, Isabel R.
    Ramakrishna, Boddu S.
    Bilyeu, Landon
    Jacquemin, Stephen J.
    Schmale, David G.
    Stockdill III, Jennifer L.
    Westrick, Judy A.
    Ault, Andrew P.
    ACS EARTH AND SPACE CHEMISTRY, 2025, 9 (03): : 603 - 616
  • [40] Erratum to: Assessing Cyanobacterial Harmful Algal Blooms as Risk Factors for Amyotrophic Lateral Sclerosis
    Nathan Torbick
    Beth Ziniti
    Elijah Stommel
    Ernst Linder
    Angeline Andrew
    Tracie Caller
    Jim Haney
    Walter Bradley
    Patricia L. Henegan
    Xun Shi
    Neurotoxicity Research, 2018, 33 : 227 - 227