A novel hybrid time-series approach for IoT-cloud-enabled environment monitoring

被引:1
|
作者
Ansari, Manzoor [1 ]
Alam, Mansaf [1 ]
机构
[1] Jamia Millia Islamia, Dept Comp Sci, Delhi, India
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 07期
关键词
Internet of Things; Cloud computing; Time-series ARIMA; ANFIS; p-Convex-ARIMA-ANFIS hybrid model; Air pollution; Diebold-Mariano test; NEURO-FUZZY; NONSTATIONARY DATA; PREDICTION; ARIMA; SYSTEMS; MODELS; ANFIS; COST;
D O I
10.1007/s11227-023-05782-3
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Air pollution is a growing concern in today's urbanized world, necessitating efficient and accurate methods for air quality monitoring. The proliferation of IoT devices has led to a surge in the generation of time-series data. With its high volume and complexity, this surge in time-series data necessitates cloud-based solutions for handling and analyzing this data effectively. However, existing methods for air quality monitoring face challenges in capturing the complex patterns and dynamics of air pollution, which often exhibit both linear and nonlinear characteristics. Air pollution data often exhibit both linear and nonlinear characteristics. Linearity and nonlinearity refer to the nature of the relationships within the data. Some aspects of air quality, such as pollutant concentrations, may follow linear patterns, while other factors, like the interaction of multiple pollutants and environmental conditions, exhibit nonlinear relationships. This complexity arises from the multifaceted nature of air quality dynamics, which various factors and interactions can influence. To address these challenges, this study introduces a novel hybrid time-series approach that combines the proven strengths of two well-established techniques: traditional time-series autoregressive integrated moving average (ARIMA) and soft computing adaptive neuro-fuzzy inference system (ANFIS). The hybrid model is designed to provide a comprehensive solution that accommodates the diverse characteristics of air quality time-series data. To assess the efficacy of our proposed model, we conducted extensive experiments using real-world air pollution datasets obtained from the Ministry of Environment, Forest and Climate Change of India, covering the period from January 2015 to July 2020. Our evaluation includes a range of performance metrics such as root-mean-square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and mean squared logarithmic error (MSLE). Specifically, our model demonstrates exceptional accuracy, with notably low error values for key metrics such as air quality index (AQI) and PM2.5. Furthermore, we subjected our innovative hybrid model to rigorous statistical testing using the Diebold-Mariano test, establishing the significance and superiority of our approach. This research advances our understanding of air quality prediction and offers a valuable solution for mitigating the detrimental effects of air pollution on public health and the environment.
引用
收藏
页码:9019 / 9053
页数:35
相关论文
共 50 条
  • [31] A New Approach to Satellite Time-series Co-registration for Landslide Monitoring
    Barazzetti, Luigi
    Gianinetto, Marco
    Scaioni, Marco
    MODERN TECHNOLOGIES FOR LANDSLIDE MONITORING AND PREDICTION, 2015, : 233 - 249
  • [32] MONITORING CHANGES IN THE COASTAL ENVIRONMENT BASED ON SAR SENTINEL-1 TIME-SERIES
    Pelich, Ramona
    Chini, Marco
    Hostache, Renaud
    Matgen, Patrick
    Lopez-Martinez, Carlos
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6666 - 6669
  • [33] A Methodical Approach to Hybrid Modelling for Contextual Anomaly Detection on Time-Series Data
    Lenz, Cederic
    Henke, Christian
    Traechtler, Ansgar
    2023 IEEE 21ST INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, INDIN, 2023,
  • [34] CNN-N-BEATS: Novel Hybrid Model for Time-Series Forecasting
    Aiwansedo, Konstandinos
    Bosche, Jerome
    Badreddine, Wafa
    Kermia, M. H.
    Djadane, Oussama
    DEEP LEARNING THEORY AND APPLICATIONS, PT I, DELTA 2024, 2024, 2171 : 38 - 57
  • [35] A hybrid approach for detecting corn and soybean phenology with time-series MODIS data
    Zeng, Linglin
    Wardlow, Brian D.
    Wang, Rui
    Shan, Jie
    Tadesse, Tsegaye
    Hayes, Michael J.
    Li, Deren
    REMOTE SENSING OF ENVIRONMENT, 2016, 181 : 237 - 250
  • [36] Circadian cycles: A time-series approach
    Garcia-Iglesias, L.
    Rivera, A. L.
    Fossion, R.
    REVISTA MEXICANA DE FISICA, 2023, 69 (05)
  • [37] ON RECREATION DEMAND - A TIME-SERIES APPROACH
    ARBEL, A
    RAVID, SA
    APPLIED ECONOMICS, 1985, 17 (06) : 979 - 990
  • [38] MODELING OF TIME-SERIES - A NEW APPROACH
    CADZOW, JA
    GEOPHYSICS, 1982, 47 (04) : 478 - 478
  • [39] A Collaborative Approach to Time-Series Prediction
    Scarpiniti, Michele
    Comminiello, Danilo
    Parisi, Raffaele
    Uncini, Aurelio
    NEURAL NETS WIRN11, 2011, 234 : 178 - 185
  • [40] A ROBUST APPROACH TO TIME-SERIES ANALYSIS
    MARKHAM, R
    SOUTH AFRICAN STATISTICAL JOURNAL, 1981, 15 (01) : 106 - 106