Air pollution is a growing concern in today's urbanized world, necessitating efficient and accurate methods for air quality monitoring. The proliferation of IoT devices has led to a surge in the generation of time-series data. With its high volume and complexity, this surge in time-series data necessitates cloud-based solutions for handling and analyzing this data effectively. However, existing methods for air quality monitoring face challenges in capturing the complex patterns and dynamics of air pollution, which often exhibit both linear and nonlinear characteristics. Air pollution data often exhibit both linear and nonlinear characteristics. Linearity and nonlinearity refer to the nature of the relationships within the data. Some aspects of air quality, such as pollutant concentrations, may follow linear patterns, while other factors, like the interaction of multiple pollutants and environmental conditions, exhibit nonlinear relationships. This complexity arises from the multifaceted nature of air quality dynamics, which various factors and interactions can influence. To address these challenges, this study introduces a novel hybrid time-series approach that combines the proven strengths of two well-established techniques: traditional time-series autoregressive integrated moving average (ARIMA) and soft computing adaptive neuro-fuzzy inference system (ANFIS). The hybrid model is designed to provide a comprehensive solution that accommodates the diverse characteristics of air quality time-series data. To assess the efficacy of our proposed model, we conducted extensive experiments using real-world air pollution datasets obtained from the Ministry of Environment, Forest and Climate Change of India, covering the period from January 2015 to July 2020. Our evaluation includes a range of performance metrics such as root-mean-square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and mean squared logarithmic error (MSLE). Specifically, our model demonstrates exceptional accuracy, with notably low error values for key metrics such as air quality index (AQI) and PM2.5. Furthermore, we subjected our innovative hybrid model to rigorous statistical testing using the Diebold-Mariano test, establishing the significance and superiority of our approach. This research advances our understanding of air quality prediction and offers a valuable solution for mitigating the detrimental effects of air pollution on public health and the environment.