An Artificial Intelligence-Based Framework to Accelerate Data-Driven Policies to Promote Solar Photovoltaics in Lisbon
被引:2
|
作者:
Freitas, Sara
论文数: 0引用数: 0
h-index: 0
机构:
Lisboa E Nova Agencia Energia & Ambiente Lisboa, P-110023 Lisbon, PortugalLisboa E Nova Agencia Energia & Ambiente Lisboa, P-110023 Lisbon, Portugal
Freitas, Sara
[1
]
Silva, Miguel
论文数: 0引用数: 0
h-index: 0
机构:
Lisboa E Nova Agencia Energia & Ambiente Lisboa, P-110023 Lisbon, PortugalLisboa E Nova Agencia Energia & Ambiente Lisboa, P-110023 Lisbon, Portugal
Silva, Miguel
[1
]
Silva, Eduardo
论文数: 0引用数: 0
h-index: 0
机构:
Lisboa E Nova Agencia Energia & Ambiente Lisboa, P-110023 Lisbon, PortugalLisboa E Nova Agencia Energia & Ambiente Lisboa, P-110023 Lisbon, Portugal
Silva, Eduardo
[1
]
Marceddu, Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
GFT Italia Srl, Innovat Unit, I-20139 Milan, ItalyLisboa E Nova Agencia Energia & Ambiente Lisboa, P-110023 Lisbon, Portugal
Marceddu, Alessandro
[2
]
Miccoli, Massimo
论文数: 0引用数: 0
h-index: 0
机构:
GFT Italia Srl, Innovat Unit, I-20139 Milan, ItalyLisboa E Nova Agencia Energia & Ambiente Lisboa, P-110023 Lisbon, Portugal
Miccoli, Massimo
[2
]
Gnatyuk, Petro
论文数: 0引用数: 0
h-index: 0
机构:
GFT Italia Srl, Innovat Unit, I-20139 Milan, ItalyLisboa E Nova Agencia Energia & Ambiente Lisboa, P-110023 Lisbon, Portugal
Gnatyuk, Petro
[2
]
Marangoni, Luca
论文数: 0引用数: 0
h-index: 0
机构:
GFT Italia Srl, Innovat Unit, I-20139 Milan, ItalyLisboa E Nova Agencia Energia & Ambiente Lisboa, P-110023 Lisbon, Portugal
Marangoni, Luca
[2
]
Amicone, Alessandro
论文数: 0引用数: 0
h-index: 0
机构:
GFT Italia Srl, Innovat Unit, I-20139 Milan, ItalyLisboa E Nova Agencia Energia & Ambiente Lisboa, P-110023 Lisbon, Portugal
Amicone, Alessandro
[2
]
机构:
[1] Lisboa E Nova Agencia Energia & Ambiente Lisboa, P-110023 Lisbon, Portugal
[2] GFT Italia Srl, Innovat Unit, I-20139 Milan, Italy
AI models;
PV mapping;
solar policy-making;
ARRAYS;
D O I:
10.1002/solr.202300597
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Due to the unavailability of up-to-date and georeferenced information about Lisbon's existing solar energy systems, tracking the progress of solar energy in relation to the city's Climate Action Plans 2030 is a complex task, thus hindering the potential of data-driven decision-making for a targeted implementation of photovoltaics (PV) in buildings and urban infrastructure. To overcome the challenges posed, an integrated approach to accelerate policy-making based on artificial intelligence (AI) resources and local citizens' and stakeholders' participation is developed and piloted in Lisbon. Recurring to a two-step AI model setup to identify and geolocate PV systems, key policy indicators are calculated to inform policy-makers about the evolution of PV deployment in the city and contribute to tailor future incentives to more depressed or energy poor districts. The AI model based on open data orthophotos from 2016 allowed estimates for the installed peak power at the city level, in that year, to be delivered in a few minutes, whereas manual inspection of aerial images will have taken several months. Although the PV capacity determined is 30% lower than the historical official numbers, the proof of concept for the proposed framework is achieved and validated by local stakeholders. Lisbon is the third sunniest European capital; However, its photovoltaics (PVs) capacity is still slightly above 10 MWp. For policy-making and planning of distributed PV in the city, it is paramount to have disaggregated info about peak power and geolocation, which are publicly inaccessible. In this work, aerial images are coupled with artificial intelligence to construct an alternative mapping tool.image (c) 2023 WILEY-VCH GmbH
机构:
Zhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R ChinaZhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R China
Zhang, S.
Wu, L.
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R ChinaZhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R China
Wu, L.
Zhao, Z.
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R ChinaZhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R China
Zhao, Z.
Masso, J. R. Fernandez
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Genet Engn & Biotechnol, Pharmaceut Dept, Havana 10100, CubaZhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R China
Masso, J. R. Fernandez
Chen, M.
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R ChinaZhejiang Univ, Coll Life Sci, Dept Bioinformat, Hangzhou 310058, Peoples R China
机构:
School of Communication, Tianjin Foreign Studies University, TianjinSchool of Communication, Tianjin Foreign Studies University, Tianjin
Yang L.
Yu Y.
论文数: 0引用数: 0
h-index: 0
机构:
School of Education, The University of Hong KongSchool of Communication, Tianjin Foreign Studies University, Tianjin
Yu Y.
Wei Y.
论文数: 0引用数: 0
h-index: 0
机构:
School of Artificial Intelligence, Tianjin University of Science and Technology, TianjinSchool of Communication, Tianjin Foreign Studies University, Tianjin