SincMSNet: a Sinc filter convolutional neural network for EEG motor imagery classification

被引:6
|
作者
Liu, Ke [1 ,2 ]
Yang, Mingzhao [1 ]
Xing, Xin [1 ]
Yu, Zhuliang [3 ]
Wu, Wei [4 ]
机构
[1] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Key Lab Big Data Intelligent Comp, Chongqing 400065, Peoples R China
[3] South China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510641, Peoples R China
[4] Alto Neurosci Inc, Los Altos, CA 94022 USA
基金
中国国家自然科学基金;
关键词
brain-computer interface (BCI); electroencephalography (EEG); motor imagery; convolutional neural network; Sinc filter; spatio-temporal filtering;
D O I
10.1088/1741-2552/acf7f4
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Motor imagery (MI) is widely used in brain-computer interfaces (BCIs). However, the decode of MI-EEG using convolutional neural networks (CNNs) remains a challenge due to individual variability. Approach. We propose a fully end-to-end CNN called SincMSNet to address this issue. SincMSNet employs the Sinc filter to extract subject-specific frequency band information and utilizes mixed-depth convolution to extract multi-scale temporal information for each band. It then applies a spatial convolutional block to extract spatial features and uses a temporal log-variance block to obtain classification features. The model of SincMSNet is trained under the joint supervision of cross-entropy and center loss to achieve inter-class separable and intra-class compact representations of EEG signals. Main results. We evaluated the performance of SincMSNet on the BCIC-IV-2a (four-class) and OpenBMI (two-class) datasets. SincMSNet achieves impressive results, surpassing benchmark methods. In four-class and two-class inter-session analysis, it achieves average accuracies of 80.70% and 71.50% respectively. In four-class and two-class single-session analysis, it achieves average accuracies of 84.69% and 76.99% respectively. Additionally, visualizations of the learned band-pass filter bands by Sinc filters demonstrate the network's ability to extract subject-specific frequency band information from EEG. Significance. This study highlights the potential of SincMSNet in improving the performance of MI-EEG decoding and designing more robust MI-BCIs. The source code for SincMSNet can be found at: https://github.com/Want2Vanish/SincMSNet.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A novel multi-scale fusion convolutional neural network for EEG-based motor imagery classification
    Yang, Guangyu
    Liu, Jinguo
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96
  • [42] A Spatial Filter Temporal Graph Convolutional Network for decoding motor imagery EEG signals
    Tang, Xianlun
    Zhang, Jing
    Qi, Yidan
    Liu, Ke
    Li, Rui
    Wang, Huiming
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [43] Densely Feature Fusion Based on Convolutional Neural Networks for Motor Imagery EEG Classification
    Li, Donglin
    Wang, Jianhui
    Xu, Jiacan
    Fang, Xiaoke
    IEEE ACCESS, 2019, 7 : 132720 - 132730
  • [44] Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks
    Xie, Yu
    Oniga, Stefan
    SENSORS, 2023, 23 (04)
  • [45] EEG-ITNet: An Explainable Inception Temporal Convolutional Network for Motor Imagery Classification
    Salami, Abbas
    Andreu-Perez, Javier
    Gillmeister, Helge
    IEEE ACCESS, 2022, 10 : 36672 - 36685
  • [46] Subject-Independent Motor Imagery EEG Classification Based on Graph Convolutional Network
    Lee, Juho
    Choi, Jin Woo
    Jo, Sungho
    PATTERN RECOGNITION, ACPR 2021, PT II, 2022, 13189 : 268 - 281
  • [47] A spatial-frequency-temporal 3D convolutional neural network for motor imagery EEG signal classification
    Miao, Minmin
    Hu, Wenjun
    Zhang, Wenbin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (08) : 1797 - 1804
  • [48] Motor Imagery Classification Based on Plain Convolutional Neural Network and Linear Interpolation
    Li M.
    Wei L.
    Journal of Shanghai Jiaotong University (Science), 2024, 29 (06) : 958 - 966
  • [49] MI-EEGNET: A novel convolutional neural network for motor imagery classification
    Riyad, Mouad
    Khalil, Mohammed
    Adib, Abdellah
    JOURNAL OF NEUROSCIENCE METHODS, 2021, 353
  • [50] A novel multi-scale convolutional neural network for motor imagery classification
    Riyad, Mouad
    Khalil, Mohammed
    Adib, Abdellah
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68