Enhanced Thermoelectric Performance of a HfS2 Bilayer by Strain Engineering

被引:6
|
作者
Wang, Hao [1 ]
Xiang, Juan [1 ]
Dai, Bo [1 ]
Ge, Ni-Na [1 ]
Zhang, Xiao-Wei [1 ]
Ji, Guang-Fu [2 ]
机构
[1] Southwest Univ Sci & Technol, State Key Lab Environm Friendly Energy Mat, Mianyang 621010, Peoples R China
[2] China Acad Engn Phys, Inst Fluid Phys, Lab Shock Wave & Detonat Phys Res, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermoelectric properties; lattice strain; first-principles calculations; HfS2; bilayer; ZT value; BULK; MONO; ZR;
D O I
10.1007/s11664-023-10443-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For two-dimensional transition metal dichalcogenides, the thermoelectric properties of the material are affected by layer thickness and lattice strain. In this paper, we investigate the thermoelectric properties of a HfS2 bilayer under different biaxial tensile strains by first-principles calculations combined with Boltzmann equations. The presence of degenerate bands in the HfS2 bilayer and the absence of its monolayer results in the better thermoelectric performance of the HfS2 bilayer than its monolayer. Moreover, this strain increases the band degeneracy of the HfS2 bilayer even more, and the degenerate bands and stepped 2D density of states lead to a high power factor. In addition, the lattice strain increases the phonon scattering rate and reduces the phonon lifetime of the HfS2 bilayer, resulting in a decrease in the lattice thermal conductivity. Ultimately, we obtained a maximum ZT value of 1.76 for the unstrained HfS2 bilayer at the optimal doping concentration. At this time, its power factor and thermal conductivity are 53.01 mW/mK(2) and 9.06 W/mK, respectively. When the strain reaches 3%, for the n-type doped HfS2 bilayer, the power factor and thermal conductivity are 69.87 mW/mK(2) and 6.36 W/mK, respectively, and the maximum ZT value is 3.29. For the p-type doped HfS2 bilayer, the maximum ZT value appears at 6% strain, which is 1.83, at which the power factor and thermal conductivity are 13.81 mW/mK(2) and 2.27 W/mK, respectively.
引用
收藏
页码:6537 / 6550
页数:14
相关论文
共 50 条
  • [21] Dominant ZA phonons and thermal carriers in HfS2
    Peng, Jie
    Najmaei, Sina
    Dubey, Madan
    Chung, Peter W.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (16)
  • [22] Effect of strain and external electric field on the optoelectronic properties of HfS2/ZrSe2 heterostructures
    Sun, Shihang
    Yang, Lu
    Zhao, Yanshen
    Liu, Huaidong
    Wei, Xingbin
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 251
  • [23] Toward High-Performance Top-Gate Ultrathin HfS2 Field-Effect Transistors by Interface Engineering
    Xu, Kai
    Huang, Yun
    Chen, Bo
    Xia, Yang
    Lei, Wen
    Wang, Zhenxing
    Wang, Qisheng
    Wang, Feng
    Yin, Lei
    He, Jun
    SMALL, 2016, 12 (23) : 3106 - 3111
  • [24] Excitonic luminescence of iodine-intercalated HfS2
    Zawadzka, N.
    Wozniak, T.
    Strawski, M.
    Antoniazzi, I.
    Grzeszczyk, M.
    Olkowska-Pucko, K.
    Muhammad, Z.
    Ibanez, J.
    Zhao, W.
    Jadczak, J.
    Stepniewski, R.
    Babinski, A.
    Molas, M. R.
    APPLIED PHYSICS LETTERS, 2023, 122 (04)
  • [25] Fabrication of Thin-Film HfS2 FET
    Kanazawa, T.
    Amemiya, T.
    Ishikawa, A.
    Upadhyaya, V.
    Tsuruta, K.
    Tanaka, T.
    Miyamoto, Y.
    2015 73RD ANNUAL DEVICE RESEARCH CONFERENCE (DRC), 2015, : 217 - 218
  • [26] Strain engineering on thermoelectric performance of Mg2Si
    Kaur, Kulwinder
    Dhiman, Shobhna
    Kumar, Ranjan
    MATERIALS RESEARCH EXPRESS, 2017, 4 (07)
  • [27] Impact of Metal Contacts on the Performance of Multilayer HfS2 Field-Effect Transistors
    Nie, Xin-Ran
    Sun, Bing-Qi
    Zhu, Hao
    Zhang, Min
    Zhao, Dong-Hui
    Chen, Lin
    Sun, Qing-Qing
    Zhang, David Wei
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (32) : 26996 - 27003
  • [28] NUCLEAR-QUADRUPOLE FREQUENCY DOUBLING IN HFS2
    BUTZ, T
    HUBLER, A
    LERF, A
    PHYSICAL REVIEW B, 1982, 26 (07): : 3973 - 3975
  • [29] Defects induced changes in conduction bands of HfS2
    Lin, Yu
    Xiao, Shaozhu
    Zhang, Xin
    Liu, Wei
    He, Yunpeng
    Zhou, Zheng
    Yang, Xiufu
    Zhang, Shiju
    He, Shaolong
    Guo, Yanfeng
    Zhao, Yong
    PHYSICA SCRIPTA, 2024, 99 (03)
  • [30] Reply to: Detectivities of WS2/HfS2 heterojunctions
    Steven Lukman
    Lu Ding
    Lei Xu
    Ye Tao
    Anders C. Riis-Jensen
    Gang Zhang
    Qingyang Steve Wu
    Ming Yang
    Sheng Luo
    Chuanghan Hsu
    Liangzi Yao
    Gengchiau Liang
    Hsin Lin
    Yong-Wei Zhang
    Kristian S. Thygesen
    Qi Jie Wang
    Yuanping Feng
    Jinghua Teng
    Nature Nanotechnology, 2022, 17 : 220 - 221