On d-orthogonal polynomials with Brenke type generating functions

被引:2
|
作者
Chaggara, Hamza [1 ]
Gahami, Abdelhamid [2 ]
机构
[1] King Khalid Univ, Coll Sci, POB 9004, Abha 61413, Saudi Arabia
[2] Sousse Univ, Higher Sch Sci & Technol, MaPSFA Lab, Sousse, Tunisia
关键词
Brenke polynomials; d-orthogonal polynomials; Generating functions; (m+1)-fold symmetric polynomials; Lowering operators; Raising operators;
D O I
10.1016/j.jmaa.2024.128123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The polynomial sequences of Brenke type {P-n}(n >= 0) are defined by the following generating function: Sigma(infinity)(n=0) Pn(x)/n! t(n) = A(t)B(xt), where A and B are two formal power series subject to the conditions A(0) B(k)(0) not equal 0, k = 0, 1, 2 .... In this work, we characterize all d-orthogonal polynomial sets of Brenke type. That allows us to obtain several new and known results. We give some examples as illustration. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Asymptotic relations involving d-orthogonal polynomials
    Lamiri, Imed
    Weslati, Jihen
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (03) : 383 - 400
  • [22] Operational rules for a new family of d-orthogonal polynomials of Laguerre type
    Benamiraa, Wissem
    Nasri, Ahmed
    Ellaggoune, Fateh
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024, 35 (02) : 77 - 94
  • [23] Geronimus transformations for sequences of d-orthogonal polynomials
    D. Barrios Rolanía
    J. C. García-Ardila
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [24] On semi-classical d-orthogonal polynomials
    Saib, Abdessadek
    MATHEMATISCHE NACHRICHTEN, 2013, 286 (17-18) : 1863 - 1885
  • [25] Geronimus transformations for sequences of d-orthogonal polynomials
    Barrios Rolania, D.
    Garcia-Ardila, J. C.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [26] Dunkl-Appell d-orthogonal polynomials
    Ben Cheikh, Y.
    Gaied, M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (08) : 581 - 597
  • [27] d-Orthogonal Charlier Polynomials and the Weyl Algebra
    Vinet, Luc
    Zhedanov, Alexei
    GROUP 28: PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRY: PROCEEDINGS OF THE 28TH INTERNATIONAL COLLOQUIUM ON GROUP-THEORETICAL METHODS IN PHYSICS, 2011, 284
  • [28] On d-symmetric classical d-orthogonal polynomials
    Ben Cheikh, Y.
    Ben Romdhane, N.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (01) : 85 - 93
  • [29] On m-symmetric d-orthogonal polynomials
    Blel, Mongi
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (1-2) : 19 - 22
  • [30] Some Inverse Problems for d-Orthogonal Polynomials
    Abdessadek Saib
    Ebtissem Zerouki
    Mediterranean Journal of Mathematics, 2013, 10 : 865 - 885