Sensitivity Matrix Based Parameter Identifiability Analysis for Generator Dynamic Models

被引:1
|
作者
Wang, Lei [1 ]
Qi, Junjian [1 ]
机构
[1] Stevens Inst Technol, Elect & Comp Engn, Hoboken, NJ 07030 USA
关键词
Generator dynamic model; parameter identifiability; QR decomposition; sensitivity matrix; singular value decomposition; structural identifiability; SYSTEMS;
D O I
10.1109/NAPS58826.2023.10318798
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, we develop an efficient method for performing parameter identifiability analysis for the generator dynamic model by utilizing the parameter sensitivity matrix, which includes all derivatives of the model outputs with respect to the parameters. Then, we present a parameter ranking technique based on the rank-revealing QR decomposition of the right singular vectors associated with the non-zero singular values of the sensitivity matrix. This technique ensures that unidentifiable parameters are consistently positioned at the end of the reordered parameter list. To validate the effectiveness of the proposed approach, we conduct experiments on a hydro generator model. The simulation results demonstrate that the sensitivity matrix based approach can accurately and efficiently assess parameter identifiability, facilitating the identification of candidate parameters for calibration.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Parameter sensitivity analysis of dynamic ice sheet models - numerical computations
    Cheng, Gong
    Lotstedt, Per
    CRYOSPHERE, 2020, 14 (02): : 673 - 691
  • [22] Dynamic compensation, parameter identifiability, and equivariances
    Sontag, Eduardo D.
    PLOS COMPUTATIONAL BIOLOGY, 2017, 13 (04)
  • [23] Parameter Identifiability for Nonlinear LPV Models
    Srinivasarengan, Krishnan
    Ragot, Jose
    Aubrun, Christophe
    Maquin, Didier
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2022, 32 (02) : 255 - 269
  • [24] Parameter Identifiability of Fundamental Pharmacodynamic Models
    Janzen, David L. I.
    Bergenholm, Linnea
    Jirstrand, Mats
    Parkinson, Joanna
    Yates, James
    Evans, Neil D.
    Chappell, Michael J.
    Frontiers in Physiology, 2016, 7
  • [25] Sensitivity and identifiability analysis of COVID-19 pandemic models
    Krivorotko, O., I
    Kabanikhin, S., I
    Sosnovskaya, M., I
    Andornaya, D., V
    VAVILOVSKII ZHURNAL GENETIKI I SELEKTSII, 2021, 25 (01): : 82 - 91
  • [26] SENSITIVITY AND PARAMETER IDENTIFIABILITY IN LINEAR-SYSTEMS
    GUARDABASSI, G
    ROMEO, F
    SCATTOLINI, R
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1981, 312 (3-4): : 167 - 177
  • [27] On structural identifiability of dynamic models
    Hyötyniemi, H
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 257 - 262
  • [28] Sensitivity Analysis and Practical Identifiability of Some Mathematical Models in Biology
    Krivorotko O.I.
    Andornaya D.V.
    Kabanikhin S.I.
    Journal of Applied and Industrial Mathematics, 2020, 14 (01) : 115 - 130
  • [29] Assessing input parameter hyperspace and parameter identifiability in a cardiovascular system model via sensitivity analysis
    Saxton, Harry
    Xu, Xu
    Schenkel, Torsten
    Halliday, Ian
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 79
  • [30] Parameter Estimation for Thermodynamic Models Using an Identifiability Analysis and Subset Selection
    Hoffmann, Christian
    Weigert, Joris
    Esche, Erik
    Repke, Jens-Uwe
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT A, 2019, 46 : 583 - 588