Accelerating the prediction of stable materials with machine learning

被引:22
|
作者
Griesemer, Sean D. [1 ]
Xia, Yi [1 ,2 ]
Wolverton, Chris [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Portland State Univ, Dept Mech & Mat Engn, Portland, OR USA
来源
NATURE COMPUTATIONAL SCIENCE | 2023年 / 3卷 / 11期
关键词
STRUCTURAL STABILITY; CRYSTAL-STRUCTURE; EXPANSION; ALLOYS;
D O I
10.1038/s43588-023-00536-w
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Despite the rise in computing power, the large space of possible combinations of elements and crystal structure types makes large-scale high-throughput surveys of stable materials prohibitively expensive, especially for complex materials and materials subject to environmental conditions such as finite temperature. When physics-based computational methods and labor-intensive experiments are not feasible, machine learning (ML) methods can be a rapid and powerful alternative. Owing to a wealth of experimental and first-principles data as well as improved ML frameworks designed for materials modeling, ML is shown to be effective in predicting stability parameters and accelerating the discovery of new stable materials. In this Review, we summarize the most recent advancements in applying ML methodologies in predicting materials stability, focusing particularly on predictions of zero- and finite-temperature stability. We also highlight the need for more ML development in predictions of other thermodynamic knobs, such as pressure and surface/interfacial energy, which practically impact materials stability. The capability of predicting stable materials is important to further accelerate the discovery of novel materials. In this Review, the authors discuss recent developments in machine learning techniques for assessing the stability of materials and highlight the opportunities in further advancing the field.
引用
收藏
页码:934 / 945
页数:12
相关论文
共 50 条
  • [41] Prediction and Construction of Energetic Materials Based on Machine Learning Methods
    Zang, Xiaowei
    Zhou, Xiang
    Bian, Haitao
    Jin, Weiping
    Pan, Xuhai
    Jiang, Juncheng
    Koroleva, M. Yu.
    Shen, Ruiqi
    MOLECULES, 2023, 28 (01):
  • [42] A Review of Performance Prediction Based on Machine Learning in Materials Science
    Fu, Ziyang
    Liu, Weiyi
    Huang, Chen
    Mei, Tao
    NANOMATERIALS, 2022, 12 (17)
  • [43] Machine Learning Application for Functional Properties Prediction in Magnetic Materials
    V. A. Milyutin
    N. N. Nikulchenkov
    Physics of Metals and Metallography, 2024, 125 (12): : 1351 - 1366
  • [44] Machine Learning Based Materials Properties Prediction Platform for Fast Discovery of Advanced Materials
    Lee, Jeongcheol
    Ahn, Sunil
    Kim, Jaesung
    Lee, Sik
    Cho, Kumwon
    ADVANCED MULTIMEDIA AND UBIQUITOUS ENGINEERING, MUE/FUTURETECH 2018, 2019, 518 : 169 - 175
  • [45] Accelerating discovery of glass materials in electronic devices through topology-guided machine learning
    Huang, Ming
    Li, Yahao
    Hu, Yongxing
    Mao, Haijun
    Liu, Zhuofeng
    Li, Wei
    Wang, Fenglin
    Ye, Yicong
    Zhang, Weijun
    Chen, Xingyu
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (12) : 8715 - 8725
  • [46] Accelerating the discovery of novel magnetic materials using machine learning-guided adaptive feedback
    Xia, Weiyi
    Sakurai, Masahiro
    Balasubramanian, Balamurugan
    Liao, Timothy
    Wang, Renhai
    Zhang, Chao
    Sun, Huaijun
    Ho, Kai-Ming
    Chelikowsky, James R.
    Sellmyer, David J.
    Wang, Cai-Zhuang
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (47)
  • [47] Machine learning for accelerating discovery of perovskite electrocatalysts
    Xin, Hongliang
    Li, Zheng
    Omidvar, Noushin
    Achenie, Luke
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [48] Accelerating inorganic discovery with machine learning and automation
    Kulik, Heather
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [49] Unconfined compressive strength prediction of rock materials based on machine learning
    Niu, Lihong
    Cui, Qiang
    Luo, Jiangyun
    Huang, Hongbing
    Zhang, Jing
    Journal of Engineering and Applied Science, 2024, 71 (01):
  • [50] A critical examination of robustness and generalizability of machine learning prediction of materials properties
    Kangming Li
    Brian DeCost
    Kamal Choudhary
    Michael Greenwood
    Jason Hattrick-Simpers
    npj Computational Materials, 9