On φ-(n,N )-ideals of Commutative Rings

被引:0
|
作者
Anebri, Adam [1 ]
Mahdou, Najib [1 ]
Tekir, Unsal [2 ]
Yildiz, Eda [3 ]
机构
[1] Univ SM Ben Abdellah Fez, Fac Sci & Technol Fez, Dept Math, Lab Modelling & Math Struct, Box 2202, Fes, Morocco
[2] Marmara Univ, Dept Math, Istanbul, Turkiye
[3] Yildiz Tech Univ, Dept Math, TR-34220 Istanbul, Turkiye
关键词
phi-(n; N)-ideal; phi-n-absorbing primary ideal; phi-n-absorbing ideal; phi-prime ideal; PRIMARY IDEALS;
D O I
10.1142/S1005386723000391
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative ring with nonzero identity and n be a positive integer. In this paper, we introduce and investigate a new subclass of phi-n-absorbing primary ideals, which are called phi-(n,N)-ideals. Let phi: J(R) -> J (R) boolean OR {(sic)} be a function, where J (R) denotes the set of all ideals of R. A proper ideal I of R is called a phi-(n,N)-ideal if x(1) center dot center dot center dot x(n+1) is an element of I\phi(I) and x(1) center dot center dot center dot x(n) is not an element of I imply that the product of x(n+1) with (n - 1) of x(1) center dot center dot center dot, x(n) is in root 0 for all x(1), center dot center dot center dot ,x(n+1) is an element of R. In addition to giving many properties of phi-(n;N)-ideals, we also use the concept of phi-(n;N)-ideals to characterize rings that have only finitely many minimal prime ideals.
引用
收藏
页码:481 / 492
页数:12
相关论文
共 50 条
  • [41] ON n-ABSORBING RINGS AND IDEALS
    Laradji, Abdallah
    COLLOQUIUM MATHEMATICUM, 2017, 147 (02) : 265 - 273
  • [42] IDEALS AND HIGHER DERIVATIONS IN COMMUTATIVE RINGS
    BROWN, WC
    KUAN, W
    CANADIAN JOURNAL OF MATHEMATICS, 1972, 24 (03): : 400 - &
  • [43] Almost Primal Ideals in Commutative Rings
    Darani, Ahmad Y.
    CHIANG MAI JOURNAL OF SCIENCE, 2011, 38 (02): : 161 - 165
  • [44] ON THE REGULAR DIGRAPH OF IDEALS OF COMMUTATIVE RINGS
    Afkhami, M.
    Karimi, M.
    Khashyarmanesh, K.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (02) : 177 - 189
  • [45] (2, J)-IDEALS IN COMMUTATIVE RINGS
    Yildiz, Eda
    Tekir, Unsal
    Koc, Suat
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2020, 73 (09): : 1201 - 1209
  • [46] Singular fuzzy ideals of commutative rings
    Kalita, Mrinal C.
    Saikia, Helen K.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2016, 30 (06) : 3543 - 3549
  • [47] Prime ideals in ultraproducts of commutative rings
    Olberding, B
    Shapiro, J
    JOURNAL OF ALGEBRA, 2005, 285 (02) : 768 - 794
  • [48] Properties of Rough Ideals in Commutative Rings
    Wang, Jiyi
    Lin, Renbing
    2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 612 - +
  • [49] GENERALIZATIONS OF PRIMAL IDEALS IN COMMUTATIVE RINGS
    Darani, Ahmad Yousefian
    MATEMATICKI VESNIK, 2012, 64 (01): : 25 - 31
  • [50] Arrays of prime ideals in commutative rings
    Bergman, GM
    JOURNAL OF ALGEBRA, 2003, 261 (02) : 389 - 410