The characteristics of helically deflected wind turbine wakes

被引:15
|
作者
Korb, H. [1 ]
Asmuth, H. [1 ,2 ]
Ivanell, S. [1 ]
机构
[1] Uppsala Univ, Dept Earth Sci, Wind Energy Sect, S-62167 Visby, Sweden
[2] Carl von Ossietzky Univ Oldenburg, Inst Phys, ForWind Ctr Wind Energy Res, D-26129 Oldenburg, Germany
关键词
wakes; mixing enhancement; turbulent mixing; LATTICE BOLTZMANN METHOD; FARM CONTROL; CURLED WAKE; FLOW; TURBULENT; POWER; PARAMETRIZATION; SIMULATIONS; INSTABILITY; MODEL;
D O I
10.1017/jfm.2023.390
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The helix approach is a new individual pitch control method to mitigate wake effects of wind turbines. Its name is derived from the helical shape of the wake caused by a rotating radial force exerted by the turbine. While its potential to increase power production has been shown in previous studies, the physics of the helical wake are not well understood to date. Open questions include whether the increased momentum in the wake stems from an enhanced wake mixing or from the wake deflection. Furthermore, its application to a row of more than two turbines has not been examined before. We study this approach in depth from both an analytical and numerical perspective. We examine large-eddy simulations (LES) of the wake of a single turbine and find that the helix approach exhibits both higher entrainment and notable deflection. As for the application to a row of turbines, we show that the phase difference between two helical wakes is independent of ambient turbulence. Examination of LES of a row of three turbines shows that power gains greatly depend on the phase difference between the helices. We find a maximum increase in the total power of approximately 10 % at a phase difference of 270?. However, we do not optimise the phase difference any further. In summary, we provide a set of analytical tools for the examination of helical wakes, show why the helix approach is able to increase power production, and provide a method to extend it to a wind farm.
引用
收藏
页数:38
相关论文
共 50 条
  • [41] UNCERTAINTY QUANTIFICATION OF WIND TURBINE WAKES UNDER RANDOM WIND CONDITIONS
    Pereira, Tassia Penha
    Ekwaro-Osire, Stephen
    Dias, Joao Paulo
    Ward, Nicholas J.
    Cunha, Americo, Jr.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 13, 2020,
  • [42] Volumetric visualization of vanishing vortices in wind turbine wakes
    Hillestad, Johannes N.
    Yadala, Srikar
    Neunaber, Ingrid
    Li, Leon
    Hearst, R. Jason
    Worth, Nicholas A.
    PHYSICAL REVIEW FLUIDS, 2024, 9 (05):
  • [43] Numerical study of the helical behavior of wind turbine wakes
    Zhong, Hongmin
    Du, Pingan
    Tang, Fangning
    2015 6TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2015,
  • [44] Modelling of offshore wind turbine wakes with the wind farm program FLaP
    Lange, B
    Waldl, HP
    Guerrero, AG
    Heinemann, D
    Barthelmie, RJ
    WIND ENERGY, 2003, 6 (01) : 87 - 104
  • [45] POD analysis of the recovery process in wind turbine wakes
    De Cillis, G.
    Cherubini, S.
    Semeraro, O.
    Leonardi, S.
    De Palma, P.
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2020), PTS 1-5, 2020, 1618
  • [46] A new analytical model for wind-turbine wakes
    Bastankhah, Majid
    Porte-Agel, Fernando
    RENEWABLE ENERGY, 2014, 70 : 116 - 123
  • [47] Dynamic Mode Decomposition of merging wind turbine wakes
    Zormpa, M.
    Le Clainche, S.
    Ferrer, E.
    Vogel, C. R.
    Willden, R. H. J.
    WAKE CONFERENCE 2023, 2023, 2505
  • [48] NUMERICAL STUDY ON WIND TURBINE WAKES: PARAMETERS ANALYSIS
    Hu, Jianxiao
    Yang, Qingshan
    Zhang, Jian
    Fundamental Research in Structural Engineering: Retrospective and Prospective, Vols 1 and 2, 2016, : 764 - 767
  • [49] Aerodynamics of wind turbine wakes in flat and complex terrains
    Subramanian, B.
    Chokani, N.
    Abhari, R. S.
    RENEWABLE ENERGY, 2016, 85 : 454 - 463
  • [50] Turbulence-resolving simulations of wind turbine wakes
    Deskos, Georgios
    Laizet, Sylvain
    Piggott, Matthew D.
    RENEWABLE ENERGY, 2019, 134 : 989 - 1002