Direct Numerical Simulation of Thermal Turbulent Boundary Layer Flow over Multiple V-Shaped Ribs at Different Angles

被引:2
|
作者
Ji, Feng [1 ]
Ding, Jing [2 ]
Lu, Jianfeng [2 ]
Wang, Weilong [2 ]
机构
[1] Sun Yat sen Univ, Sch Intelligent Syst Engn, Shenzhen 510275, Peoples R China
[2] Sun Yat sen Univ, Sch Mat Sci & Engn, Guangzhou 510275, Peoples R China
基金
中国国家自然科学基金;
关键词
direct numerical simulation; thermal turbulent boundary layer; ribbed surface; heat transfer; Reynolds analogy; CHANNEL FLOW; HEAT-TRANSFER; SQUARE BARS; REYNOLDS;
D O I
10.3390/en16093831
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Direct numerical simulations (DNSs) of spatially developing thermal turbulent boundary layers over angle-ribbed walls were performed. Four rib angles (? = 90 degrees, 60 degrees, 45 degrees and 30 degrees) were examined. It was found that the 45 degrees ribs produced the highest drag coefficient, whereas the 30 degrees ribs most improved the Stanton number. In comparison to the transverse rib case, streamwise velocity and dimensionless temperature in the V-shaped cases significantly increased in the near wall region and were attenuated by secondary flows further away from the ribs, which suggested a break of the outer-layer similarity in the scenario presented. The surprising improvement of heat transfer performance in the 30 degrees rib case was mainly due to its large dispersive heat flux, while dispersive stress reached its peak value in the 45 degrees case, emphasizing the dissimilarity in transporting momentum and heat by turbulence over a ribbed surface. Additionally, by calculating the global and local Reynolds analogy factors, we concluded that the enhancement in heat transfer efficiency was attributed to an increasing Reynolds analogy factor in the intermediate region as the rib angle decreased.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Large-eddy simulation of turbulent boundary layer flow over multiple hills
    Deng, Ying
    Chong, Kai Leong
    Li, Yan
    Lu, Zhi-ming
    Wang, Bo-fu
    JOURNAL OF HYDRODYNAMICS, 2023, 35 (04) : 746 - 756
  • [42] Direct numerical simulation of a supersonic turbulent boundary layer over a compression-decompression corner
    Duan, Junyi
    Li, Xin
    Li, Xinliang
    Liu, Hongwei
    PHYSICS OF FLUIDS, 2021, 33 (06)
  • [43] Direct numerical simulation of a turbulent boundary layer with separation and reattachment over a range of Reynolds numbers
    Abe, Hiroyuki
    FLUID DYNAMICS RESEARCH, 2019, 51 (01)
  • [44] Direct numerical simulation of turbulent flow and heat transfer in a spatially developing turbulent boundary layer laden with particles
    Li, Dong
    Luo, Kun
    Fan, Jianren
    JOURNAL OF FLUID MECHANICS, 2018, 845 : 417 - 461
  • [45] Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow
    Dimitropoulos, CD
    Dubief, Y
    Shaqfeh, ESG
    Moin, P
    Lele, SK
    PHYSICS OF FLUIDS, 2005, 17 (01) : 011705 - 011705
  • [46] Numerical investigation of heat transfer enhancement in a solar air heater roughened by multiple V-shaped ribs
    Jin, Dongxu
    Quan, Shenglin
    Zuo, Jianguo
    Xu, Shiming
    RENEWABLE ENERGY, 2019, 134 : 78 - 88
  • [47] Simulating turbulent flow over thin element and flat valley V-shaped riblets
    Pollard, A
    Savill, AM
    Tullis, S
    Wang, X
    AIAA JOURNAL, 1996, 34 (11) : 2261 - 2268
  • [48] Numerical investigation of fluid flow structure and heat transfer in a passage with continuous and truncated V-shaped ribs
    Li, Shian
    Xie, Gongnan
    Sunden, Bengt
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2015, 25 (01) : 171 - 189
  • [49] Direct numerical simulation of a turbulent boundary layer up to Reθ=2500
    Lee, Jae Hwa
    Sung, Hyung Jin
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2011, 32 (01) : 1 - 10
  • [50] Direct numerical simulation of a supersonic turbulent boundary layer with hydrogen combustion
    Wang, Chuhan
    Xu, Chunxiao
    JOURNAL OF FLUID MECHANICS, 2024, 998