A geometric framework for outlier detection in high-dimensional data

被引:0
|
作者
Herrmann, Moritz [1 ]
Pfisterer, Florian [1 ]
Scheipl, Fabian [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Stat, Ludwigstr 33, D-80539 Munich, Germany
关键词
anomaly detection; dimension reduction; manifold learning; outlier detection; REDUCTION;
D O I
10.1002/widm.1491
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Outlier or anomaly detection is an important task in data analysis. We discuss the problem from a geometrical perspective and provide a framework which exploits the metric structure of a data set. Our approach rests on the manifold assumption, that is, that the observed, nominally high-dimensional data lie on a much lower dimensional manifold and that this intrinsic structure can be inferred with manifold learning methods. We show that exploiting this structure significantly improves the detection of outlying observations in high dimensional data. We also suggest a novel, mathematically precise and widely applicable distinction between distributional and structural outliers based on the geometry and topology of the data manifold that clarifies conceptual ambiguities prevalent throughout the literature. Our experiments focus on functional data as one class of structured high-dimensional data, but the framework we propose is completely general and we include image and graph data applications. Our results show that the outlier structure of highdimensional and non-tabular data can be detected and visualized using manifold learning methods and quantified using standard outlier scoring methods applied to the manifold embedding vectors. This article is categorized under: Technologies > Structure Discovery and Clustering Fundamental Concepts of Data and Knowledge > Data Concepts Technologies > Visualization
引用
收藏
页数:20
相关论文
共 50 条
  • [31] High-dimensional outlier detection using random projections
    Navarro-Esteban, P.
    Cuesta-Albertos, J. A.
    TEST, 2021, 30 (04) : 908 - 934
  • [32] High-dimensional outlier detection using random projections
    P. Navarro-Esteban
    J. A. Cuesta-Albertos
    TEST, 2021, 30 : 908 - 934
  • [33] A Method for Measurement Data Modeling and High-Dimensional Outlier Detection Based on Large Dimensional Matrix
    Chen, Gang
    Fan, Huanhuan
    An, Baoran
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 2274 - 2279
  • [34] Adaptive Clustering for Outlier Identification in High-Dimensional Data
    Thudumu, Srikanth
    Branch, Philip
    Jin, Jiong
    Singh, Jugdutt
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2019, PT II, 2020, 11945 : 215 - 228
  • [35] Outlier mining in large high-dimensional data sets
    Angiulli, F
    Pizzuti, C
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (02) : 203 - 215
  • [36] Outlier Detection in High Dimensional Data
    Kamalov, Firuz
    Leung, Ho Hon
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2020, 19 (01)
  • [37] Outlier detection for high dimensional data
    Aggarwal, CC
    Yu, PS
    SIGMOD RECORD, 2001, 30 (02) : 37 - 46
  • [38] A NOVEL TENSOR ALGEBRAIC APPROACH FOR HIGH-DIMENSIONAL OUTLIER DETECTION UNDER DATA MISALIGNMENT
    Fan, Bo
    Zhang, Zemin
    Aeron, Shuchin
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3628 - 3632
  • [39] A fast outlier detection strategy for distributed high-dimensional data sets with mixed attributes
    Anna Koufakou
    Michael Georgiopoulos
    Data Mining and Knowledge Discovery, 2010, 20 : 259 - 289
  • [40] A fast outlier detection strategy for distributed high-dimensional data sets with mixed attributes
    Koufakou, Anna
    Georgiopoulos, Michael
    DATA MINING AND KNOWLEDGE DISCOVERY, 2010, 20 (02) : 259 - 289