A Hierarchical Feature Ensemble Deep Learning Approach for Software Defect Prediction

被引:2
|
作者
Zhang, Shenggang [1 ]
Jiang, Shujuan [1 ]
Yan, Yue [1 ]
机构
[1] China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
Software defect prediction; deep learning; abstract syntax tree; class dependency network; ensemble learning;
D O I
10.1142/S0218194023500079
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Software defect prediction can detect modules that may have defects in advance and optimize resource allocation to improve test efficiency and reduce development costs. Traditional features cannot capture deep semantic and grammatical information, which limits the further development of software defect prediction. Therefore, it has gradually become a trend to use deep learning technology to automatically learn valuable deep features from source code or relevant data. However, most software defect prediction methods based on deep learning extraction features from a single information source or only use a single deep learning model, which leads to the fact that the extracted features are not comprehensive enough to affect the final prediction performance. In view of this, this paper proposes a Hierarchical Feature Ensemble Deep Learning (HFEDL) Approach for software defect prediction. Firstly, the HFEDL approach needs to obtain three types of information sources: abstract syntax tree (AST), class dependency network (CDN) and traditional features. Then, the Convolutional Neural Network (CNN) and the Bidirectional Long Short-Term Memory based on Attention mechanism (BiLSTM+Attention) are used to extract different valuable features from the three information sources and multiple prediction sub-models are constructed. Next, all the extracted features are fused by a filter mechanism to obtain more comprehensive features and construct a fusion prediction sub-model. Finally, all the sub-models are integrated by an ensemble learning method to obtain the final prediction model. We use 11 projects in the PROMISE defect repository and evaluate our approach in both non-effort-aware and effort-aware scenarios. The experimental results show that the prediction performance of our approach is superior to state-of-the-art methods in both scenarios.
引用
收藏
页码:543 / 573
页数:31
相关论文
共 50 条
  • [41] A random approximate reduct-based ensemble learning approach and its application in software defect prediction
    Jiang, Feng
    Yu, Xu
    Gong, Dunwei
    Du, Junwei
    INFORMATION SCIENCES, 2022, 609 : 1147 - 1168
  • [42] Software defect prediction using learning to rank approach
    Nassif, Ali Bou
    Talib, Manar Abu
    Azzeh, Mohammad
    Alzaabi, Shaikha
    Khanfar, Rawan
    Kharsa, Ruba
    Angelis, Lefteris
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [43] A New Learning to Rank Approach for Software Defect Prediction
    Al-omari, Sara
    Elsheikh, Yousef
    Azzeh, Mohammed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (08) : 805 - 812
  • [44] Software defect prediction using learning to rank approach
    Ali Bou Nassif
    Manar Abu Talib
    Mohammad Azzeh
    Shaikha Alzaabi
    Rawan Khanfar
    Ruba Kharsa
    Lefteris Angelis
    Scientific Reports, 13
  • [45] A Learning-to-Rank Approach to Software Defect Prediction
    Yang, Xiaoxing
    Tang, Ke
    Yao, Xin
    IEEE TRANSACTIONS ON RELIABILITY, 2015, 64 (01) : 234 - 246
  • [46] Studying the effectiveness of deep active learning in software defect prediction
    Feyzi F.
    Daneshdoost A.
    International Journal of Computers and Applications, 2023, 45 (7-8) : 534 - 552
  • [47] Software Fault Prediction Using an RNN-Based Deep Learning Approach and Ensemble Machine Learning Techniques
    Borandag, Emin
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [48] A Software Defect Prediction Approach Based on Hybrid Feature Dimensionality Reduction
    Zhang, Shenggang
    Jiang, Shujuan
    Yan, Yue
    Scientific Programming, 2023, 2023
  • [49] A feature selection approach based on a similarity measure for software defect prediction
    Yu, Qiao
    Jiang, Shu-juan
    Wang, Rong-cun
    Wang, Hong-yang
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2017, 18 (11) : 1744 - 1753
  • [50] A feature selection approach based on a similarity measure for software defect prediction
    Qiao Yu
    Shu-juan Jiang
    Rong-cun Wang
    Hong-yang Wang
    Frontiers of Information Technology & Electronic Engineering, 2017, 18 : 1744 - 1753