Deep learning-based approach for the automatic segmentation of adult and pediatric temporal bone computed tomography images

被引:11
|
作者
Ke, Jia [1 ]
Lv, Yi [2 ,3 ]
Ma, Furong [1 ]
Du, Yali [1 ]
Xiong, Shan [1 ]
Wang, Junchen [2 ]
Wang, Jiang [1 ,4 ]
机构
[1] Peking Univ, Peking Univ Hosp 3, Dept Otorhinolaryngol Head & Neck Surg, Beijing, Peoples R China
[2] Beihang Univ, Sch Mech Engn & Automat, Beijing, Peoples R China
[3] North China Res Inst Electro Opt, Beijing, Peoples R China
[4] Nanjing Med Univ, Affiliated Hosp 1, Dept Otorhinolaryngol, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; automatic segmentation; temporal bone computed tomography; accuracy; adults and children; ATLAS-BASED SEGMENTATION; CHORDA TYMPANI; FACIAL-NERVE; CT IMAGES; VALIDATION; ORGANS;
D O I
10.21037/qims-22-658
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Automatic segmentation of temporal bone computed tomography (CT) images is fundamental to image-guided otologic surgery and the intelligent analysis of CT images in the field of otology. This study was conducted to test a convolutional neural network (CNN) model that can automatically segment almost all temporal bone anatomy structures in adult and pediatric CT images. Methods: A dataset comprising 80 annotated CT volumes was collected, of which 40 samples were obtained from adults and 40 from children. A further 60 annotated CT volumes (30 from adults and 30 from children) were used to train the model. The remaining 20 annotated CT volumes were employed to determine the model's generalizability for automatic segmentation. Finally, the Dice coefficient (DC) and average symmetric surface distance (ASSD) were utilized as metrics to evaluate the performance of the CNN model. Two independent-sample t-tests were used to compare the test set results of adults and children. Results: In the adult test set, the mean DC values of all the structures ranged from 0.714 to 0.912, and the ASSD values were less than 0.24 mm for 11 structures. In the pediatric test set, the mean DC values of all the structures ranged from 0.658 to 0.915, and the ASSD values were less than 0.18 mm for 11 structures. There was no statistically significant difference between the adult and child test sets in most temporal bone structures. Conclusions: Our CNN model shows excellent automatic segmentation performance and good generalizability for both adult and pediatric temporal bone CT images, which can help to advance otologist education, intelligent imaging diagnosis, surgery simulation, application of augmented reality, and preoperative planning for image-guided otology surgery.
引用
收藏
页码:1577 / 1591
页数:15
相关论文
共 50 条
  • [21] Deep Learning-Based Image Segmentation of Cone-Beam Computed Tomography Images for Oral Lesion Detection
    Wang, Xueling
    Meng, Xianmin
    Yan, Shu
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [22] Automated deep learning-based segmentation of COVID-19 lesions from chest computed tomography images
    Salehi, Mohammad
    Ardekani, Mahdieh
    Taramsari, Alireza
    Ghaffari, Hamed
    Haghparast, Mohammad
    POLISH JOURNAL OF RADIOLOGY, 2022, 87 : E478 - E486
  • [23] Deep Learning Based Identification and Segmentation of Lung Tumors on Computed Tomography Images
    Kashyap, M.
    Panjwani, N.
    Hasan, M. A. S. A.
    Huang, C.
    Bush, K.
    Dong, P.
    Zaky, S. S.
    Chin, A. L.
    Vitzthum, L.
    Loo, B. W., Jr.
    Diehn, M.
    Xing, L.
    Gensheimer, M. F.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E92 - E93
  • [24] A deep learning-based automatic image quality assessment method for respiratory phase on computed tomography chest images
    Su, Jialin
    Li, Meifang
    Lin, Yongping
    Xiong, Liu
    Yuan, Caixing
    Zhou, Zhimin
    Yan, Kunlong
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (03) : 2240 - 2254
  • [25] Deep learning for automatic segmentation of paraspinal muscle on computed tomography
    Yao, Ning
    Li, Xintong
    Wang, Ling
    Cheng, Xiaoguang
    Yu, Aihong
    Li, Chenwei
    Wu, Ke
    ACTA RADIOLOGICA, 2023, 64 (02) : 596 - 604
  • [26] Deep learning-based automatic segmentation of images in cardiac radiography: A promising challenge
    Song, Yucheng
    Ren, Shengbing
    Lu, Yu
    Fu, Xianghua
    Wong, Kelvin K. L.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 220
  • [27] Automatic deep learning-based pleural effusion segmentation in lung ultrasound images
    Damjan Vukovic
    Andrew Wang
    Maria Antico
    Marian Steffens
    Igor Ruvinov
    Ruud JG van Sloun
    David Canty
    Alistair Royse
    Colin Royse
    Kavi Haji
    Jason Dowling
    Girija Chetty
    Davide Fontanarosa
    BMC Medical Informatics and Decision Making, 23
  • [28] Deep Learning-Based Automatic Segmentation of the Proximal Femur from MR Images
    Zeng, Guodong
    Zheng, Guoyan
    INTELLIGENT ORTHOPAEDICS: ARTIFICIAL INTELLIGENCE AND SMART IMAGE-GUIDED TECHNOLOGY FOR ORTHOPAEDICS, 2018, 1093 : 73 - 79
  • [29] Deep learning-based fully automatic segmentation of wrist cartilage in MR images
    Brui, Ekaterina
    Efimtcev, Aleksandr Y.
    Fokin, Vladimir A.
    Fernandez, Remi
    Levchuk, Anatoliy G.
    Ogier, Augustin C.
    Samsonov, Alexey A.
    Mattei, Jean P.
    Melchakova, Irina V.
    Bendahan, David
    Andreychenko, Anna
    NMR IN BIOMEDICINE, 2020, 33 (08)
  • [30] Automatic deep learning-based pleural effusion segmentation in lung ultrasound images
    Vukovic, Damjan
    Wang, Andrew
    Antico, Maria
    Steffens, Marian
    Ruvinov, Igor
    van Sloun, Ruud J. G.
    Canty, David
    Royse, Alistair
    Royse, Colin
    Haji, Kavi
    Dowling, Jason
    Chetty, Girija
    Fontanarosa, Davide
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2023, 23 (01)