Ground State Solution for Schrodinger-KdV System with Periodic Potential

被引:2
|
作者
Liang, Fei-Fei [1 ]
Wu, Xing-Ping [1 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger-KdV system; Periodic potential; Ground state solution; Variational method; EXISTENCE;
D O I
10.1007/s12346-023-00741-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the coupled nonlinear Schrodinger-Korteweg-de Vries system with periodic potential. By using the variational method and Nehari manifold, we obtain the existence of non-trivial ground state solution.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Average vector field methods for the coupled Schrodinger-KdV equations
    Zhang Hong
    Song Song-He
    Chen Xu-Dong
    Zhou Wei-En
    CHINESE PHYSICS B, 2014, 23 (07)
  • [42] Multi-symplectic method for the coupled Schrodinger-KdV equations
    Zhang Hong
    Song Song-He
    Zhou Wei-En
    Chen Xu-Dong
    CHINESE PHYSICS B, 2014, 23 (08)
  • [43] Normalized Ground-State Solution for the Schrödinger–KdV System
    Fei-Fei Liang
    Xing-Ping Wu
    Chun-Lei Tang
    Mediterranean Journal of Mathematics, 2022, 19
  • [44] New optical solitons and modulation instability analysis of generalized coupled nonlinear Schrodinger-KdV system
    Mathanaranjan, Thilagarajah
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (06)
  • [45] A GROUND STATE SOLUTION TO THE CHERN-SIMONS-SCHRODINGER SYSTEM
    Deng, Jin
    Li, Benniao
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 1743 - 1764
  • [46] New explicit exact solutions to nonlinearly coupled Schrodinger-KdV equations
    Zhang, SQ
    Li, ZB
    ACTA PHYSICA SINICA, 2002, 51 (10) : 2197 - 2201
  • [47] A Haar wavelet collocation method for coupled nonlinear Schrodinger-KdV equations
    Oruc, Omer
    Esen, Alaattin
    Bulut, Fatih
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (09):
  • [48] Optimal auxiliary function method for analyzing nonlinear system of coupled Schrodinger-KdV equation with Caputo operator
    Alshehry, Azzh Saad
    Yasmin, Humaira
    Ganie, Abdul Hamid
    Ahmad, Muhammad Wakeel
    Shah, Rasool
    OPEN PHYSICS, 2023, 21 (01):
  • [49] A conservative compact finite difference scheme for the coupled Schrodinger-KdV equations
    Xie, Shusen
    Yi, Su-Cheol
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2020, 46 (01)
  • [50] Ground state solution and nodal solution for fractional nonlinear Schrodinger equation with indefinite potential
    Li, Yuan
    Zhao, Dun
    Wang, Qingxuan
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (04)