Rare earth metals ion intercalated hydrated vanadium oxides for high-performance aqueous zinc-ion batteries

被引:12
|
作者
Hu, Bingbing [1 ]
Yang, Xinyao [1 ]
Li, Dongshan [1 ]
Jiang, Jiayu [1 ]
Liu, Chenglin [1 ]
Deng, Yu [1 ]
Pu, Hong [2 ]
Ma, Guangqiang [2 ]
Li, Zhi [1 ,3 ]
机构
[1] Chongqing Jiaotong Univ, China Spain Collaborat Res Ctr Adv Mat, Sch Mat Sci & Engn, Chongqing 400074, Peoples R China
[2] Panzhihua Univ, Sichuan Vanadium Titanium Mat Engn Technol Res Ctr, Panzhihua 617000, Sichuan, Peoples R China
[3] Chongqing Jiaotong Univ, Sch Mat Sci & Engn, Chongqing 400074, Peoples R China
关键词
Rare earth metal ions; Intercalation; Vanadium oxides; Electrochemical properties; Aqueous zinc-ion battery; CHALLENGES; DESIGN; ANODE;
D O I
10.1016/j.ceramint.2023.12.177
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hydrated vanadium oxide (V2O5 & sdot;nH2O) is promising cathode candidates for aqueous rechargeable Zn-ion batteries (ZIBs) owing to its high theoretical specific capacity, abundant resources and environmentally friendly. However, the higher charge density of Zn2+ lead to its structural instability, cyclic degradation and sluggish Zn2+ diffusion kinetics. Herein, rare earth metal ions intercalated into the interlayer of V2O5 & sdot;nH2O materials (abbreviated as RE-VOH) are successfully synthesized to expand interlayer spacing and stabilize the layered structure via a simple sol-gel method, among, the yttrium ion intercalated V2O5 & sdot;nH2O (Y-VOH) exhibits a honeycomb porous microstructure and a remarkably enlarged interlayer distance (13.6 angstrom), which can not only increase the contact area between the electrode material and the electrolyte but also offer rapid diffusion channel for Zn2+. Meanwhile, the problem of vanadium dissolution of cathode materials is inhibited by the electrolyte additive strategy through adding suitable vanadium oxide sol to aqueous electrolyte, furthermore, the zinc anode modification strategy in electroplating process inhibits the formation of zinc dendrites. Benefitting from the synergistic effect of modification design for the ZIBs systems of cathode, electrolyte and anode, the overall electrochemical performance of Y-VOH electrode is significantly improved, delivering a large specific capacity of 337 mAh g-1 at the current density of 500 mA g-1 and excellent rate capability of 170 mAh g-1 at 10 A g-1, along with an outstanding capacity retention of 90 % over 3000 cycles. Additionally, systematical ex situ characterizations prove the (de)intercalation reversibility of Zn2+ storage mechanism for the Y-VOH cathode. This research may provide a new way for exploiting high performance vanadium-based materials for aqueous ZIBs.
引用
收藏
页码:8421 / 8428
页数:8
相关论文
共 50 条
  • [31] Al3+ Introduction Hydrated Vanadium Oxide Induced High Performance for Aqueous Zinc-Ion Batteries
    Xu, Jing
    Zhang, Yu
    Liu, Chenfan
    Cheng, Huanhuan
    Cai, Xuanxuan
    Jia, Dianzeng
    Lin, He
    SMALL, 2022, 18 (47)
  • [32] Vanadium-Containing Layered Materials as High-Performance Cathodes for Aqueous Zinc-Ion Batteries
    Lewis, Courtney-Elyce M.
    Fernando, Joseph F. S.
    Siriwardena, Dumindu P.
    Firestein, Konstantin L.
    Zhang, Chao
    von Treifeldt, Joel E.
    Golberg, Dmitri V.
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (04)
  • [33] Low-Temperature and High-Performance Vanadium-Based Aqueous Zinc-Ion Batteries
    Jin, Tao
    Ye, Xiling
    Chen, Zhuo
    Bai, Shuai
    Zhang, Yining
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (04) : 4729 - 4740
  • [34] Manganese oxides hierarchical microspheres as cathode material for high-performance aqueous zinc-ion batteries
    Yang, Bo
    Cao, Xianwen
    Wang, Shenghan
    Wang, Ning
    Sun, Chenglin
    ELECTROCHIMICA ACTA, 2021, 385 (385)
  • [35] Spontaneous Growth of Alkali Metal Ion-Preintercalated Vanadium Pentoxide for High-Performance Aqueous Zinc-Ion Batteries
    Fan, Lanlan
    Li, Zhenhuan
    Kang, Weimin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (14) : 5095 - 5104
  • [36] Ultra-fast activated NH4+-intercalated vanadium oxide cathode for high-performance aqueous zinc-ion batteries
    Xu, Yilong
    Shao, Fei
    Huang, Yongfeng
    Huang, Xudong
    Jiang, Fuyi
    Kang, Feiyu
    Liu, Wenbao
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 683 : 226 - 235
  • [37] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Xuechao Pu
    Baozheng Jiang
    Xianli Wang
    Wenbao Liu
    Liubing Dong
    Feiyu Kang
    Chengjun Xu
    Nano-Micro Letters, 2020, 12
  • [38] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Pu, Xuechao
    Jiang, Baozheng
    Wang, Xianli
    Liu, Wenbao
    Dong, Liubing
    Kang, Feiyu
    Xu, Chengjun
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [39] Sodium Ion Stabilized Vanadium Oxide Nanowire Cathode for High-Performance Zinc-Ion Batteries
    He, Pan
    Zhang, Guobin
    Liao, Xiaobin
    Yan, Mengyu
    Xu, Xu
    An, Qinyou
    Liu, Jun
    Mai, Liqiang
    ADVANCED ENERGY MATERIALS, 2018, 8 (10)
  • [40] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Xuechao Pu
    Baozheng Jiang
    Xianli Wang
    Wenbao Liu
    Liubing Dong
    Feiyu Kang
    Chengjun Xu
    Nano-Micro Letters, 2020, 12 (11) : 130 - 144