Performance and mechanism of constructed wetland-microbial fuel cell systems in treating mariculture wastewater contaminated with antibiotics

被引:22
|
作者
Liu, Fei-fei [1 ]
Zhang, Yu-xue [1 ]
Lu, Tong [2 ]
机构
[1] Shandong Univ, Inst Marine Sci & Technol, Qingdao 266237, Peoples R China
[2] Jiangsu Environm Engn Technol Co Ltd, Nanjing 210019, Peoples R China
基金
中国国家自然科学基金;
关键词
Constructed wetland; Microbial fuel cell; Mariculture wastewater; Sulfadiazine; Antibiotic resistance genes; CORRESPONDING RESISTANCE GENES; BACTERIAL COMMUNITIES; ELECTRICITY PRODUCTION; REMOVAL; OPERATION; INTEGRONS; FATE;
D O I
10.1016/j.psep.2022.11.022
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mariculture wastewater has raised great concerns owing to its potential impact on the sustainability of coastal environments and aquaculture practices. In this study, constructed wetlands coupled with microbial fuel cells (CW-MFCs) were constructed to evaluate their ability to treat mariculture wastewater that has been contaminated with antibiotic sulfadiazine (SDZ). The results showed that both open- and closed-circuit CW-MFCs (R1 and R2) had comparable removal efficiencies for NH4+-N, total inorganic nitrogen (TIN), chemical oxygen demand (COD), and total phosphorus (TP). Compared with R3, which had no SDZ, R2 was less efficient at removing NH4+N and TP, and also presented inhibited electricity generation. R2 in closed-circuit mode was more efficient at removing SDZ than R1 in open-circuit mode. However, R2 also had a higher relative abundance of antibiotic resistance genes (ARGs) in the anode region and cathode effluent than R1, indicating that the closed-circuit CWMFC system was inferior to the open-circuit system in controlling ARGs. High-throughput sequencing analysis suggested that the presence of SDZ and being in closed-circuit mode both increased the diversity of the microbial community, which in turn led to changes in the removal efficiency of SDZ and the system's ability to generate electricity. The potential hosts of the three ARGs at the phylum level were mainly from Proteobacteria, Desulfobacterota, Patescibacteria, Firmicutes, Actinobacteriota, and Spirochaetota. Notably, some genera related to sulfur transformation in Desulfobacterota showed strong positive correlations with ARGs. This study is beneficial to expand the application of CW-MFCs in the treatment of antibiotic-contaminated mariculture wastewater.
引用
收藏
页码:293 / 303
页数:11
相关论文
共 50 条
  • [31] Performance optimization of two-stage constructed wetland-microbial fuel cell system for the treatment of high-concentration wastewater
    Han, Jiabi
    Zhao, Jinhui
    Wang, Yangyang
    Shu, Lisha
    Tang, Jixian
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (23) : 63620 - 63630
  • [32] Integrated Constructed Wetland-Microbial Fuel Cell using Biochar as Wetland Matrix: Influence on Power Generation and Textile Wastewater Treatment
    Sonu, Kumar
    Sogani, Monika
    Syed, Zainab
    CHEMISTRYSELECT, 2021, 6 (32): : 8323 - 8328
  • [33] Denitrification performance, bioelectricity generation and microbial response in microbial fuel cell-constructed wetland treating carbon constraint wastewater
    Tao, Mengni
    Kong, Yu
    Jing, Zhaoqian
    Jia, Qiusheng
    Tao, Zhengkai
    Li, Yu-You
    BIORESOURCE TECHNOLOGY, 2022, 363
  • [34] Mapping the field of constructed wetland-microbial fuel cell: A review and bibliometric analysis
    Ji, Bin
    Zhao, Yaqian
    Vymazal, Jan
    Mander, Ulo
    Lust, Rauno
    Tang, Cheng
    CHEMOSPHERE, 2021, 262
  • [35] In situ COD monitoring with use of a hybrid of constructed wetland-microbial fuel cell
    Lu, Rui
    Chen, Yuhua
    Wu, Junmei
    Chen, Disong
    Wu, Zhenbin
    Xiao, Enrong
    Water Research, 2022, 210
  • [36] In situ COD monitoring with use of a hybrid of constructed wetland-microbial fuel cell
    Lu, Rui
    Chen, Yuhua
    Wu, Junmei
    Chen, Disong
    Wu, Zhenbin
    Xiao, Enrong
    WATER RESEARCH, 2022, 210
  • [37] Enhancement of energy recovery from caffeine wastewater in constructed wetland-microbial fuel cell through operating conditions
    Teoh, Tean-Peng
    Ong, Soon-An
    Ho, Li-Ngee
    Wong, Yee-Shian
    Lutpi, Nabilah Aminah
    Tan, Sing-Mei
    Ong, Yong-Por
    Yap, Kea-Lee
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (35) : 84397 - 84411
  • [38] Discerning the effect of operating conditions on the improvement of up-flow constructed wetland-microbial fuel cell performance in treating mixed azo dyes wastewater and bioelectricity generation
    Teoh, Tean-Peng
    Ong, Soon-An
    Ho, Li-Ngee
    Wong, Yee-Shian
    Lutpi, Nabilah Aminah
    Tan, Sing-Mei
    Ong, Yong-Por
    Yap, Kea-Lee
    ENERGY ECOLOGY AND ENVIRONMENT, 2024, 9 (03) : 301 - 313
  • [39] Enhancement of energy recovery from caffeine wastewater in constructed wetland-microbial fuel cell through operating conditions
    Tean-Peng Teoh
    Soon-An Ong
    Li-Ngee Ho
    Yee-Shian Wong
    Nabilah Aminah Lutpi
    Sing-Mei Tan
    Yong-Por Ong
    Kea-Lee Yap
    Environmental Science and Pollution Research, 2023, 30 : 84397 - 84411
  • [40] Enhanced wastewater treatment and electricity generation using stacked constructed wetland-microbial fuel cells
    Tamta, Prashansa
    Rani, Neetu
    Yadav, Asheesh Kumar
    ENVIRONMENTAL CHEMISTRY LETTERS, 2020, 18 (03) : 871 - 879