Trudinger-type inequalities for variable Riesz potentials of functions in Musielak-Orlicz-Morrey spaces over metric measure spaces

被引:2
|
作者
Ohno, Takao [1 ,3 ]
Shimomura, Tetsu [2 ]
机构
[1] Oita Univ, Fac Educ, Oita, Japan
[2] Hiroshima Univ, Grad Sch Humanities & Social Sci, Dept Math, Higashihiroshima, Japan
[3] Oita Univ, Fac Educ, Oita 8701192, Japan
关键词
double-phase functional; Hajlasz spaces; maximal functions; metric measure space; Musielak-Orlicz-Morrey spaces; Riesz potentials; Trudinger's inequality; SOBOLEV SPACES; MAXIMAL OPERATOR; BOUNDEDNESS; EMBEDDINGS;
D O I
10.1002/mana.202300265
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Trudinger-type inequalities for variable Riesz potentials J(alpha center dot,tau)f of functions in Musielak-Orlicz-Morrey spaces over bounded metric measure spaces. As a good example, we obtain Trudinger-type inequalities for double-phase functionals Phi(x,t)=t(p(x))+a(x)t(q(x)). As an application, we introduce Musielak-Orlicz-Morrey-Haj & lstrok;asz-Sobolev spaces and give Trudinger-type inequalities for Sobolev functions.
引用
收藏
页码:1248 / 1274
页数:27
相关论文
共 50 条
  • [21] Trudinger’s Inequality and Continuity of Potentials on Musielak–Orlicz–Morrey Spaces
    Fumi-Yuki Maeda
    Yoshihiro Mizuta
    Takao Ohno
    Tetsu Shimomura
    Potential Analysis, 2013, 38 : 515 - 535
  • [22] Maximal and Riesz Potential Operators on Musielak-Orlicz Spaces Over Metric Measure Spaces
    Ohno, Takao
    Shimomura, Tetsu
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2018, 90 (06)
  • [23] BOUNDEDNESS OF THE MAXIMAL OPERATOR ON MUSIELAK-ORLICZ-MORREY SPACES
    Maeda, Fumi-Yuki
    Ohno, Takao
    Shimomura, Tetsu
    TOHOKU MATHEMATICAL JOURNAL, 2017, 69 (04) : 483 - 495
  • [24] GAGLIARDO-NIRENBERG INEQUALITY FOR GENERALIZED RIESZ POTENTIALS OF FUNCTIONS IN MUSIELAK-ORLICZ SPACES OVER QUASI-METRIC MEASURE SPACES
    Hashimoto, Daiki
    Sawano, Yoshihiro
    Shimomura, Tetsu
    COLLOQUIUM MATHEMATICUM, 2020, 161 (01) : 51 - 66
  • [25] Generalized fractional maximal operators on Musielak-Orlicz-Morrey spaces
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    POSITIVITY, 2023, 27 (02)
  • [26] Commutators of operators in Musielak-Orlicz-Morrey spaces on differential forms
    Wang, Jianwei
    Xing, Yuming
    ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (04)
  • [27] Generalized fractional maximal operators on Musielak-Orlicz-Morrey spaces
    Yoshihiro Mizuta
    Takao Ohno
    Tetsu Shimomura
    Positivity, 2023, 27
  • [28] Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces
    Mizuta, Yoshihiro
    Shimomura, Tetsu
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (04) : 1201 - 1217
  • [29] Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces
    Yoshihiro Mizuta
    Tetsu Shimomura
    Czechoslovak Mathematical Journal, 2023, 73 : 1201 - 1217
  • [30] Trudinger's inequality and continuity for Riesz potential of functions in Orlicz spaces of two variable exponents over nondoubling measure spaces
    Kanemori, Sachihiro
    Ohno, Takao
    Shimomura, Tetsu
    KYOTO JOURNAL OF MATHEMATICS, 2017, 57 (01) : 79 - 96