The Chen Autoregressive Moving Average Model for Modeling Asymmetric Positive Continuous Time Series

被引:1
|
作者
Stone, Renata F. [1 ,2 ]
Loose, Lais H. [1 ]
Melo, Moizes S. [1 ,3 ]
Bayer, Fabio M. [1 ,2 ,4 ]
机构
[1] Univ Fed Santa Maria, Dept Estat, BR-97105900 Santa Maria, Brazil
[2] Univ Fed Santa Maria, Programa Posgrad Engn Prod, BR-97105900 Santa Maria, Brazil
[3] Univ Fed Rio Grande, Programa Posgrad Ambientometria, BR-96203900 Rio Grande, Brazil
[4] Univ Fed Santa Maria, Santa Maria Space Sci Lab LACESM, BR-97105900 Santa Maria, Brazil
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
CHARMA model; Chen distribution; forecast; time series;
D O I
10.3390/sym15091675
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce a new dynamic model for time series based on the Chen distribution, which is useful for modeling asymmetric, positive, continuous, and time-dependent data. The proposed Chen autoregressive moving average (CHARMA) model combines the flexibility of the Chen distribution with the use of covariates and lagged terms to model the conditional median response. We introduce the CHARMA structure and discuss conditional maximum likelihood estimation, hypothesis testing inference along with the estimator asymptotic properties of the estimator, diagnostic analysis, and forecasting. In particular, we provide closed-form expressions for the conditional score vector and the conditional information matrix. We conduct a Monte Carlo experiment to evaluate the introduced theory in finite sample sizes. Finally, we illustrate the usefulness of the proposed model by exploring two empirical applications in a wind-speed and maximum-temperature time-series dataset.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] On fractionally integrated autoregressive moving-average time series models with conditional heteroscedasticity
    Ling, SQ
    Li, WK
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (439) : 1184 - 1194
  • [42] Time series modelling using neural networks with autoregressive-moving average structure
    Chan, CW
    Chan, WC
    Cheung, KC
    ALGORITHMS AND ARCHITECTURES FOR REAL-TIME CONTROL 1997, 1997, : 87 - 88
  • [43] INSENSITIVITY OF AUTOREGRESSIVE MOVING AVERAGE REPRESENTATIONS OF SOME AUSTRALIAN QUARTERLY TIME-SERIES
    MCDONALD, J
    ECONOMETRICA, 1976, 44 (06) : 1277 - 1287
  • [44] COMPUTATION OF THEORETICAL AUTOCOVARIANCE MATRICES OF MULTIVARIATE AUTOREGRESSIVE MOVING AVERAGE TIME-SERIES
    MITTNIK, S
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1990, 52 (01): : 151 - 155
  • [45] A Disease Outbreak Detection System using Autoregressive Moving Average in Time Series Analysis
    Buendia, Richard John M.
    Solano, Geoffrey A.
    2015 6TH INTERNATIONAL CONFERENCE ON INFORMATION, INTELLIGENCE, SYSTEMS AND APPLICATIONS (IISA), 2015,
  • [46] Network vector autoregressive moving average model
    Chen, Xiao
    Chen, Yu
    Hu, Xixu
    STATISTICS AND ITS INTERFACE, 2023, 16 (01) : 593 - 615
  • [47] Generalized Autoregressive Moving Average modeling of the Bellcore data
    Ramachandran, R
    Bhethanabotla, VR
    25TH ANNUAL IEEE CONFERENCE ON LOCAL COMPUTER NETWORKS - PROCEEDINGS, 2000, : 654 - 661
  • [48] Testing for poolability of the space-time autoregressive moving-average model
    Gehman, Andrew J.
    Wei, William W. S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (20) : 4787 - 4808
  • [49] Seasonal Autoregressive Integrated Moving Average Time Series Model for Tourism Demand: The Case of Sal Island, Cape Verde
    Neves, Gilberto A.
    Nunes, Catarina S.
    Fernandes, Paula Odete
    ADVANCES IN TOURISM, TECHNOLOGY AND SYSTEMS, VOL 2, 2022, 284 : 11 - 21
  • [50] Seasonal Autoregressive Integrated Moving Average Time Series Model for Tourism Demand: The Case of Sal Island, Cape Verde
    Neves, Gilberto A.
    Nunes, Catarina S.
    Fernandes, Paula Odete
    Smart Innovation, Systems and Technologies, 2022, 284 : 11 - 21