Joint learning of feature and topology for multi-view graph convolutional network

被引:14
|
作者
Chen, Yuhong [1 ,2 ]
Wu, Zhihao [1 ,2 ]
Chen, Zhaoliang [1 ,2 ]
Dong, Mianxiong [3 ]
Wang, Shiping [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350116, Peoples R China
[2] Fuzhou Univ, Fujian Prov Key Lab Network Comp & Intelligent Inf, Fuzhou 350116, Peoples R China
[3] Muroran Inst Technol, Dept Sci & Informat, Muroran 0508585, Japan
基金
中国国家自然科学基金;
关键词
Multi-view learning; Semi-supervised classification; Graph convolution network; Feature and topology fusion;
D O I
10.1016/j.neunet.2023.09.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph convolutional network has been extensively employed in semi-supervised classification tasks. Although some studies have attempted to leverage graph convolutional networks to explore multi-view data, they mostly consider the fusion of feature and topology individually, leading to the underutilization of the consistency and complementarity of multi-view data. In this paper, we propose an end-to-end joint fusion framework that aims to simultaneously conduct a consistent feature integration and an adaptive topology adjustment. Specifically, to capture the feature consistency, we construct a deep matrix decomposition module, which maps data from different views onto a feature space obtaining a consistent feature representation. Moreover, we design a more flexible graph convolution that allows to adaptively learn a more robust topology. A dynamic topology can greatly reduce the influence of unreliable information, which acquires a more adaptive representation. As a result, our method jointly designs an effective feature fusion module and a topology adjustment module, and lets these two modules mutually enhance each other. It takes full advantage of the consistency and complementarity to better capture the more intrinsic information. The experimental results indicate that our method surpasses state-of-the-art semi-supervised classification methods.
引用
收藏
页码:161 / 170
页数:10
相关论文
共 50 条
  • [41] Multi-view multi-task spatiotemporal graph convolutional network for air quality prediction
    Sui, Shanshan
    Han, Qilong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 893
  • [42] Bipartite Graph-based Discriminative Feature Learning for Multi-View Clustering
    Yan, Weiqing
    Xu, Jindong
    Liu, Jinglei
    Yue, Guanghui
    Tang, Chang
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3403 - 3411
  • [43] Subgraph feature extraction based on multi-view dictionary learning for graph classification
    Zheng, Xin
    Liang, Shouzhi
    Liu, Bo
    Xiong, Xiaoming
    Hu, Xianghong
    Liu, Yuan
    KNOWLEDGE-BASED SYSTEMS, 2021, 214
  • [44] Multi-view DDoS Network Flow Feature Extraction Method via Convolutional Neural Network
    Liu, Yifu
    Cheng, Jieren
    Tang, Xiangyan
    Li, Mengyang
    Xie, Luyi
    CYBERSPACE SAFETY AND SECURITY, PT II, 2019, 11983 : 30 - 41
  • [45] Multi-view dual-channel graph convolutional networks with multi-task learning
    Ling, Yuting
    Li, Yuan
    Liu, Xiyu
    Qu, Jianhua
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (02) : 1953 - 1969
  • [46] Multi-view dual-channel graph convolutional networks with multi-task learning
    Yuting Ling
    Yuan Li
    Xiyu Liu
    Jianhua Qu
    Complex & Intelligent Systems, 2024, 10 : 1953 - 1969
  • [47] Graph convolutional neural network for multi-scale feature learning
    Edwards, Michael
    Xie, Xianghua
    Palmer, Robert, I
    Tam, Gary K. L.
    Alcock, Rob
    Roobottom, Carl
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2020, 194
  • [48] Multi-View and Multimodal Graph Convolutional Neural Network for Autism Spectrum Disorder Diagnosis
    Song, Tianming
    Ren, Zhe
    Zhang, Jian
    Wang, Mingzhi
    MATHEMATICS, 2024, 12 (11)
  • [49] Geometric localized graph convolutional network for multi-view semi-supervised classification
    Huang, Aiping
    Lu, Jielong
    Wu, Zhihao
    Chen, Zhaoliang
    Chen, Yuhong
    Wang, Shiping
    Zhang, Hehong
    INFORMATION SCIENCES, 2024, 677
  • [50] Dual adaptive learning multi-task multi-view for graph network representation learning
    Han, Beibei
    Wei, Yingmei
    Wang, Qingyong
    Wan, Shanshan
    NEURAL NETWORKS, 2023, 162 : 297 - 308