Impact of the manufacturing process on graphite blend electrodes with silicon nanoparticles for lithium-ion batteries

被引:16
|
作者
Dominguez, Diana Zapata [1 ,2 ]
Mondal, Brinti [1 ,2 ]
Gaberscek, Miran [5 ]
Morcrette, Mathieu [1 ,2 ,3 ,4 ]
Franco, Alejandro A. [1 ,2 ,3 ,4 ]
机构
[1] Univ Picardie Jules Verne, Lab React & Chim Solides LRCS, CNRS, Hub Energie,UMR 7314, 15 Rue Baudelocque, F-80039 Amiens, France
[2] Reseau Stockage Electrochim Energie RS2E, CNRS, FR 3459, Hub Energie, 15 Rue Baudelocque, F-80039 Amiens, France
[3] ALISTORE European Res Inst, CNRS, FR 3104, Hub Energie, 15 Rue Baudelocque, F-80039 Amiens, France
[4] Inst Univ France, 103 Blvd St Michel, F-75005 Paris, France
[5] Natl Inst Chem, Dept Mat Chem, Hajdrihova 19, Ljubljana 1000, Slovenia
基金
欧洲研究理事会;
关键词
Li-ion batteries; Silicon nanoparticles; Graphite; Slurry; Negative electrodes; Calendering; ANODES; TORTUOSITY; COMPOSITE; PERFORMANCE; BINDERS; DENSITY;
D O I
10.1016/j.jpowsour.2023.233367
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Correlating the input/output parameters of the manufacturing process aims to understand the link between the different steps of the Lithium-Ion Battery (LiB) electrode-making process. Fostering the interrelation of the properties in silicon/graphite blends for fabricating negative electrodes benefits the comprehension, quantification, and prediction of LiB output properties. Here, we report the impact of the manufacturing parameters during mixing, coating, and calendering on the properties of silicon/graphite blend negative electrodes. The mixing process was evaluated depending on the graphite content, where the viscosity increases with its percentage. Moreover, the slurry rheology directly impacts the electrode stability when the coating is done by using broader comma gaps. The calendering step evidences a porosity threshold necessary for adequate ionic resistance, tortuosity factor, and cycling life. Strong calendering increased the current collector adhesion, ionic resistance, tortuosity factor, and high cycling instability. On the other hand, better cyclabilities are obtained at moderate calendered electrodes, exhibiting the lowest ionic resistances and tortuosity factors.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries
    Tao Li
    Juan-Yu Yang
    Shi-Gang Lu
    Han Wang
    Hai-Yang Ding
    Rare Metals, 2013, 32 (03) : 299 - 304
  • [42] Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries
    Pharr, Matt
    Zhao, Kejie
    Wang, Xinwei
    Suo, Zhigang
    Vlassak, Joost J.
    NANO LETTERS, 2012, 12 (09) : 5039 - 5047
  • [43] Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries
    Tao Li
    Juan-Yu Yang
    Shi-Gang Lu
    Han Wang
    Hai-Yang Ding
    Rare Metals, 2013, 32 : 299 - 304
  • [44] High Capacity Silicon Electrodes with Nafion as Binders for Lithium-Ion Batteries
    Xu, Jiagang
    Zhang, Qinglin
    Cheng, Yang-Tse
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (03) : A401 - A405
  • [45] Silicon nanopowder as active material for hybrid electrodes of lithium-ion batteries
    S. P. Kuksenko
    I. O. Konovalenko
    Russian Journal of Applied Chemistry, 2011, 84 : 1179 - 1187
  • [46] Magnetron Sputtering Silicon Thin Film Electrodes for Lithium-Ion Batteries
    Evshchik, E.
    Novikov, D.
    Levchenko, A.
    Nefedkin, S.
    Shikhovtseva, A. V.
    Bushkova, O. V.
    Dobrovolsky, Yu. A.
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (03): : 2860 - 2874
  • [47] Nanocrystalline silicon carbide thin film electrodes for lithium-ion batteries
    Zhang, Hongtao
    Xu, Hui
    SOLID STATE IONICS, 2014, 263 : 23 - 26
  • [48] Is silicon worth it? Modelling degradation in composite silicon-graphite lithium-ion electrodes
    Bonkile, Mayur P.
    Jiang, Yang
    Kirkaldy, Niall
    Sulzer, Valentin
    Timms, Robert
    Wang, Huizhi
    Offer, Gregory
    Wu, Billy
    JOURNAL OF POWER SOURCES, 2024, 606
  • [49] Failure mechanism of bulk silicon anode electrodes for lithium-ion batteries
    Li, Tao
    Yang, Juan-Yu
    Lu, Shi-Gang
    Wang, Han
    Ding, Hai-Yang
    RARE METALS, 2013, 32 (03) : 299 - 304
  • [50] Silicon nanopowder as active material for hybrid electrodes of lithium-ion batteries
    Kuksenko, S. P.
    Konovalenko, I. O.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2011, 84 (07) : 1179 - 1187