Balanced Hermitian structures on almost abelian Lie algebras
被引:14
|
作者:
Fino, Anna
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USAUniv Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Fino, Anna
[1
,2
]
Paradiso, Fabio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, ItalyUniv Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
Paradiso, Fabio
[1
]
机构:
[1] Univ Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[2] Florida Int Univ, Dept Math & Stat, Miami, FL 33199 USA
Almost abelian Lie algebras;
Hermitian metrics;
Balanced metrics;
Anomaly flow;
SPECIAL METRICS;
KAHLER;
EXISTENCE;
FLOW;
SOLVMANIFOLDS;
MANIFOLDS;
D O I:
10.1016/j.jpaa.2022.107186
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study balanced Hermitian structures on almost abelian Lie algebras, i.e. on Lie algebras with a codimension-one abelian ideal. In particular, we classify six-dimensional almost abelian Lie algebras which carry a balanced structure. It has been conjectured in [1] that a compact complex manifold admitting both a balanced metric and an SKT metric necessarily has a K.hler metric: we prove this conjecture for compact almost abelian solvmanifolds with left-invariant complex structures. Moreover, we investigate the behaviour of the flow of balanced metrics introduced in [2] and of the anomaly flow [3] on almost abelian Lie groups. In particular, we show that the anomaly flow preserves the balanced condition and that locally conformally K.hler metrics are fixed points.& COPY; 2022 Elsevier B.V. All rights reserved.
机构:
Tsiolkovsky Russian State Technol Univ MATI, Moscow, Russia
Natl Res Univ, Moscow Aviat Inst, Moscow, RussiaTsiolkovsky Russian State Technol Univ MATI, Moscow, Russia