New degrees of freedom for differential forms on cubical meshes

被引:2
|
作者
Lohi, Jonni [1 ]
机构
[1] Univ Jyvaskyla, Fac Informat Technol, POB 35, FI-40014 Jyvaskyla, Finland
关键词
Cochains; Cubical mesh; Degrees of freedom; Differential forms; Discrete exterior calculus;
D O I
10.1007/s10444-023-10047-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider new degrees of freedom for higher order differential forms on cubical meshes. The approach is inspired by the idea of Rapetti and Bossavit to define higher order Whitney forms and their degrees of freedom using small simplices. We show that higher order differential forms on cubical meshes can be defined analogously using small cubes and prove that these small cubes yield unisolvent degrees of freedom. Importantly, this approach is compatible with discrete exterior calculus and expands the framework to cover higher order methods on cubical meshes, complementing the earlier strategy based on simplices.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] The new design of controllers with two degrees of freedom
    Zhang, Z.
    Su, D.
    Huazhong Ligong Daxue Xuebao/Journal Huazhong (Central China) University of Science and Technology, 2001, 29 (06): : 37 - 39
  • [22] Differential invariants of a class of Lagrangian systems with two degrees of freedom
    Bagderina, Yulia Yu.
    Tarkhanov, Nikolai N.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (02) : 733 - 749
  • [23] NEW INTEGRABLE POTENTIALS OF 2 DEGREES OF FREEDOM
    WOJCIECHOWSKA, M
    WOJCIECHOWSKI, S
    PHYSICS LETTERS A, 1984, 105 (1-2) : 11 - 14
  • [24] SPONTANEOUS BREAKDOWN OF SYMMETRIES AND NEW DEGREES OF FREEDOM
    SALLER, H
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1975, 30 (04): : 541 - 566
  • [25] Nonstandard finite element de Rham complexes on cubical meshes
    Andrew Gillette
    Kaibo Hu
    Shuo Zhang
    BIT Numerical Mathematics, 2020, 60 : 373 - 409
  • [26] Nonstandard finite element de Rham complexes on cubical meshes
    Gillette, Andrew
    Hu, Kaibo
    Zhang, Shuo
    BIT NUMERICAL MATHEMATICS, 2020, 60 (02) : 373 - 409
  • [28] DEGREES OF FREEDOM
    TOKARYK, TT
    NATURE, 1991, 350 (6315) : 183 - 183
  • [29] DEGREES OF FREEDOM
    DOERING, DS
    SCIENCE, 1995, 269 (5226) : 903 - 903
  • [30] Degrees of freedom
    Walker, HM
    PSYCHOLOGICAL REVIEW, 1940, 31 : 253 - 269