Beneficial performance of a quasi-zero-stiffness vibration isolator with displacement-velocity feedback control

被引:10
|
作者
Cheng, Chun [1 ]
Hu, Yan [1 ]
Ma, Ran [1 ]
Wang, Weiping [1 ]
机构
[1] Jiangsu Normal Univ, Sch Mechatron Engn, Xuzhou 221116, Peoples R China
关键词
Vibration isolator; Quasi-zero-stiffness; Feedback control; Time delay; Transmissibility; EULER BUCKLED BEAM; TIME-DELAY; DESIGN; SYSTEM; OSCILLATOR; RESONANCES;
D O I
10.1007/s11071-022-08132-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A displacement-velocity feedback control method is proposed to enhance the isolation performance of a quasi-zero-stiffness vibration isolator (QZS-VI). Time delay is considered in the controlled QZS-VI system. First, the steady-state solutions are obtained using the averaging method and validated by a numerical method. The jump phenomenon and frequency island phenomenon can occur, and a stability analysis is implemented. Then, the effects of the time delay and feedback gain on the frequency response and stability of solutions are analyzed in detail. Then, the force transmissibility is defined to evaluate the isolation performance of the controlled QZS-VI system. The results show that the time delay mainly affects the stability of the controlled system and weakly influences the isolation performance. The proposed displacement-velocity feedback control method can effectively suppress the vibration in the resonant region without affecting the performance in the isolation region. Finally, the vibration control effect is illustrated by the concept of an equivalent damping ratio.
引用
收藏
页码:5165 / 5177
页数:13
相关论文
共 50 条
  • [31] Dynamic analysis and vibration isolation characteristics of a compact quasi-zero-stiffness vibration isolator
    Wu, Shaopei
    Chen, Min
    He, Bo
    Li, Guofang
    Gao, Quanfu
    Li, Deyang
    Ding, Wangcai
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2025, 170
  • [32] Enhanced vibration isolation performance of quasi-zero-stiffness isolator by introducing tunable nonlinear inerter
    Liu, Chaoran
    Yu, Kaiping
    Liao, Baopeng
    Hu, Rongping
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 95
  • [33] Compensation strategy for quasi-zero-stiffness vibration isolator under payload mismatch
    Chang, Yaopeng
    Li, Yu
    Zhou, Jiaxi
    Wang, Kai
    Wang, Qiang
    Wen, Guilin
    ACTA MECHANICA SINICA, 2024, 40 (10)
  • [34] Design and analysis of a disc rubber vibration isolator with quasi-zero-stiffness characteristic
    Xu, Dao-Lin
    Zhou, Jie
    Zhou, Jia-Xi
    Zhang, Jing
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2015, 42 (08): : 22 - 28
  • [35] New insights into the damping characteristics of a typical quasi-zero-stiffness vibration isolator
    Liu, Chaoran
    Yu, Kaiping
    Tang, Jie
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2020, 124
  • [36] Design and analysis of an adjustable pneumatic vibration isolator with quasi-zero-stiffness characteristic
    Xu, Dao-Lin
    Zhao, Zhi
    Zhou, Jia-Xi
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2013, 40 (06): : 47 - 52
  • [37] Research on the shock isolation performance of preload quasi-zero-stiffness isolator
    Zhang C.-H.
    Zeng Z.-C.
    Zhang L.
    Yan M.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2019, 32 (05): : 767 - 777
  • [38] Dynamic Analysis of Quasi-Zero-Stiffness Vibration Isolator Considering Load Variation
    Cheng C.
    Li S.
    Wang Y.
    Jiang X.
    1600, Nanjing University of Aeronautics an Astronautics (37): : 743 - 749
  • [40] Effect of the Time-Varying Damping on the Vibration Isolation of a Quasi-Zero-Stiffness Vibration Isolator
    Li, Xin
    Zhang, Jinqiu
    Yao, Jun
    SHOCK AND VIBRATION, 2020, 2020