Optimized YOLOv7 for Small Target Detection in Aerial Images Captured by Drone

被引:0
|
作者
Liu, Yanxin [1 ]
Chen, Shuai [1 ]
Luo, Lin [1 ]
机构
[1] Liaoning Petrochem Univ, Sch Informat & Control Engn, Fushun, Peoples R China
关键词
Small target detection; drone aerial photography; YOLOv7; clustering algorithm; spatial pyramid pooling;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is challenging to detect small targets in aerial images captured by drones due to variations in target sizes and occlusions arising from the surrounding environment. This study proposes an optimized object detection algorithm based on YOLOv7 to address the above-mentioned challenges. The proposed method comprises the design of a Genetic Kmeans (1IoU) clustering algorithm to obtain customized anchor boxes that more significantly apply to the dataset. Moreover, the SPPFCSPC_group structure is optimized using group convolutions to reduce model parameters. The fusion of Spatial Pyramid Pooling-Fast (SPPF) and Cross Stage Partial (CSP) structures leads to increased detection accuracy and enhanced multi-scale feature fusion network. Furthermore, a Detect Head is incorporated into the classification phase for more accurate position and class predictions. According to experimental findings, the optimized YOLOv7 algorithm performs quite well on the VisDrone2019 dataset in terms of detection accuracy. Compared with the original YOLOv7 algorithm, the optimized version shows a 0.18% increase in the Average Precision (AP), a reduction of 5.7 M model parameters, and a 1.12 Frames Per Second (FPS) improvement in the frame rate. With the above described enhancements in AP and parameter reduction, the precision of small target detection and the real-time detection speed are increased notably. In general, the optimized YOLOv7 algorithm offers superior accuracy and real-time capability, thus making it well-suited for small target detection tasks in real-time drone aerial photography.
引用
收藏
页码:70 / 79
页数:10
相关论文
共 50 条
  • [31] YOLOv7 Model for Small Object Handling in Maritime Images
    Pobar, Miran
    CENTRAL EUROPEAN CONFERENCE ON INFORMATION AND INTELLIGENT SYSTEMS, CECIIS, 2023, : 391 - 397
  • [32] Improved Lightweight Underwater Target Detection Algorithm of YOLOv7
    Xin, Shi'ao
    Ge, Haibo
    Yuan, Hao
    Yang, Yudi
    Yao, Yang
    Computer Engineering and Applications, 2024, 60 (03)
  • [33] Night target detection algorithm based on improved YOLOv7
    Bowen, Zheng
    Huacai, Lu
    Shengbo, Zhu
    Xinqiang, Chen
    Hongwei, Xing
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [34] Small Target-YOLOv5: Enhancing the Algorithm for Small Object Detection in Drone Aerial Imagery Based on YOLOv5
    Zhou, Jiachen
    Su, Taoyong
    Li, Kewei
    Dai, Jiyang
    SENSORS, 2024, 24 (01)
  • [35] YOLOv7-PE: A Precise and Efficient Enhancement of YOLOv7 for Underwater Target Detection
    Li, Zhichuang
    Xie, Haijun
    Feng, Jingyi
    Wang, Zhenbo
    Yuan, Zizhao
    IEEE ACCESS, 2024, 12 : 133937 - 133951
  • [36] Object Detection Based on Improved YOLOv7 for UAV Aerial Image
    Cui, Liqun
    Cao, Huawei
    Computer Engineering and Applications, 60 (20): : 189 - 197
  • [37] Improved YOLOv7 Object Detection Algorithm for Fisheye Images
    Wu, Zhaodong
    Xu, Cheng
    Liu, Hongzhe
    Fu, Ying
    Jian, Muwei
    Computer Engineering and Applications, 2024, 60 (14) : 250 - 256
  • [38] YOLOv7-SN: Underwater Target Detection Algorithm Based on Improved YOLOv7
    Zhao, Ming
    Zhou, Huibo
    Li, Xue
    SYMMETRY-BASEL, 2024, 16 (05):
  • [39] Lightweight Underwater Target Detection Algorithm Based on YOLOv7
    Xin, Shiao
    Ge, Haibo
    Yuan, Hao
    Yang, Yudi
    Yao, Yang
    Ma, Sai
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 387 - 391
  • [40] MCA-YOLOv7: An Improved UAV Target Detection Algorithm Based on YOLOv7
    Qin, Zhiyong
    Chen, Dike
    Wang, Hongyuan
    IEEE ACCESS, 2024, 12 : 42642 - 42650