DBlink: dynamic localization microscopy in super spatiotemporal resolution via deep learning

被引:17
|
作者
Saguy, Alon [1 ]
Alalouf, Onit [1 ]
Opatovski, Nadav [2 ]
Jang, Soohyen [3 ,4 ]
Heilemann, Mike [3 ,4 ]
Shechtman, Yoav [1 ]
机构
[1] Technion Israel Inst Technol, Dept Biomed Engn, Haifa, Israel
[2] Technion Israel Inst Technol, Russell Berrie Nanotechnol Inst, Haifa, Israel
[3] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, Frankfurt, Germany
[4] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, IMPRS Cellular Biophys, Frankfurt, Germany
关键词
SINGLE-MOLECULE MICROSCOPY; SUPERRESOLUTION MICROSCOPY; NETWORK; LIMIT; CELL;
D O I
10.1038/s41592-023-01966-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-molecule localization microscopy (SMLM) has revolutionized biological imaging, improving the spatial resolution of traditional microscopes by an order of magnitude. However, SMLM techniques require long acquisition times, typically a few minutes, to yield a single super-resolved image, because they depend on accumulation of many localizations over thousands of recorded frames. Hence, the capability of SMLM to observe dynamics at high temporal resolution has always been limited. In this work, we present DBlink, a deep-learning-based method for super spatiotemporal resolution reconstruction from SMLM data. The input to DBlink is a recorded video of SMLM data and the output is a super spatiotemporal resolution video reconstruction. We use a convolutional neural network combined with a bidirectional long short-term memory network architecture, designed for capturing long-term dependencies between different input frames. We demonstrate DBlink performance on simulated filaments and mitochondria-like structures, on experimental SMLM data under controlled motion conditions and on live-cell dynamic SMLM. DBlink's spatiotemporal interpolation constitutes an important advance in super-resolution imaging of dynamic processes in live cells. DBlink uses deep learning to capture long-term dependencies between different frames in single-molecule localization microscopy data, yielding super spatiotemporal resolution videos of fast dynamic processes in living cells.
引用
收藏
页码:1939 / 1948
页数:15
相关论文
共 50 条
  • [31] Fluorophore localization algorithms for super-resolution microscopy
    Small A.
    Stahlheber S.
    Nature Methods, 2014, 11 (3) : 267 - 279
  • [32] Fluorophore localization algorithms for super-resolution microscopy
    Small, Alex
    Stahlheber, Shane
    NATURE METHODS, 2014, 11 (03) : 267 - 279
  • [33] Neuronal Localization of SENP Proteins with Super Resolution Microscopy
    Colnaghi, Luca
    Conz, Andrea
    Russo, Luca
    Musi, Clara A.
    Fioriti, Luana
    Borsello, Tiziana
    Salmona, Mario
    BRAIN SCIENCES, 2020, 10 (11) : 1 - 11
  • [34] Context-aware deep learning enables high-efficacy localization of high concentration microbubbles for super-resolution ultrasound localization microscopy
    Shin, Yirang
    Lowerison, Matthew R.
    Wang, Yike
    Chen, Xi
    You, Qi
    Dong, Zhijie
    Anastasio, Mark A.
    Song, Pengfei
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [35] Enhancing spatial resolution in MONCH for electron microscopy via deep learning
    Xie, X.
    Flores, L. Barba
    Haro, B. Bejar
    Bergamaschi, A.
    Frojdh, E.
    Muller, E.
    Paton, K. A.
    Poghosyana, E.
    Remlinger, C.
    JOURNAL OF INSTRUMENTATION, 2024, 19 (01)
  • [36] Deep learning enables cross-modality super-resolution in fluorescence microscopy
    Hongda Wang
    Yair Rivenson
    Yiyin Jin
    Zhensong Wei
    Ronald Gao
    Harun Günaydın
    Laurent A. Bentolila
    Comert Kural
    Aydogan Ozcan
    Nature Methods, 2019, 16 : 103 - 110
  • [37] SUPER-RESOLUTION RECONSTRUCTION OF TRANSMISSION ELECTRON MICROSCOPY IMAGES USING DEEP LEARNING
    Suveer, Amit
    Gupta, Anindya
    Kylberg, Gustaf
    Sintorn, Ida-Maria
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 548 - 551
  • [38] Deep learning enables cross-modality super-resolution in fluorescence microscopy
    Wang, Hongda
    Rivenson, Yair
    Jin, Yiyin
    Wei, Zhensong
    Gao, Ronald
    Gunaydin, Harun
    Bentolila, Laurent A.
    Kural, Comert
    Ozcan, Aydogan
    NATURE METHODS, 2019, 16 (01) : 103 - +
  • [39] Super resolution microscopy and deep learning identify Zika virus reorganization of the endoplasmic reticulum
    Rory K. M. Long
    Kathleen P. Moriarty
    Ben Cardoen
    Guang Gao
    A. Wayne Vogl
    François Jean
    Ghassan Hamarneh
    Ivan R. Nabi
    Scientific Reports, 10
  • [40] Super resolution microscopy and deep learning identify Zika virus reorganization of the endoplasmic reticulum
    Long, Rory K. M.
    Moriarty, Kathleen P.
    Cardoen, Ben
    Gao, Guang
    Vogl, A. Wayne
    Jean, Francois
    Hamarneh, Ghassan
    Nabi, Ivan R.
    SCIENTIFIC REPORTS, 2020, 10 (01)