DBlink: dynamic localization microscopy in super spatiotemporal resolution via deep learning

被引:17
|
作者
Saguy, Alon [1 ]
Alalouf, Onit [1 ]
Opatovski, Nadav [2 ]
Jang, Soohyen [3 ,4 ]
Heilemann, Mike [3 ,4 ]
Shechtman, Yoav [1 ]
机构
[1] Technion Israel Inst Technol, Dept Biomed Engn, Haifa, Israel
[2] Technion Israel Inst Technol, Russell Berrie Nanotechnol Inst, Haifa, Israel
[3] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, Frankfurt, Germany
[4] Goethe Univ Frankfurt, Inst Phys & Theoret Chem, IMPRS Cellular Biophys, Frankfurt, Germany
关键词
SINGLE-MOLECULE MICROSCOPY; SUPERRESOLUTION MICROSCOPY; NETWORK; LIMIT; CELL;
D O I
10.1038/s41592-023-01966-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-molecule localization microscopy (SMLM) has revolutionized biological imaging, improving the spatial resolution of traditional microscopes by an order of magnitude. However, SMLM techniques require long acquisition times, typically a few minutes, to yield a single super-resolved image, because they depend on accumulation of many localizations over thousands of recorded frames. Hence, the capability of SMLM to observe dynamics at high temporal resolution has always been limited. In this work, we present DBlink, a deep-learning-based method for super spatiotemporal resolution reconstruction from SMLM data. The input to DBlink is a recorded video of SMLM data and the output is a super spatiotemporal resolution video reconstruction. We use a convolutional neural network combined with a bidirectional long short-term memory network architecture, designed for capturing long-term dependencies between different input frames. We demonstrate DBlink performance on simulated filaments and mitochondria-like structures, on experimental SMLM data under controlled motion conditions and on live-cell dynamic SMLM. DBlink's spatiotemporal interpolation constitutes an important advance in super-resolution imaging of dynamic processes in live cells. DBlink uses deep learning to capture long-term dependencies between different frames in single-molecule localization microscopy data, yielding super spatiotemporal resolution videos of fast dynamic processes in living cells.
引用
收藏
页码:1939 / 1948
页数:15
相关论文
共 50 条
  • [1] DBlink: dynamic localization microscopy in super spatiotemporal resolution via deep learning
    Alon Saguy
    Onit Alalouf
    Nadav Opatovski
    Soohyen Jang
    Mike Heilemann
    Yoav Shechtman
    Nature Methods, 2023, 20 : 1939 - 1948
  • [2] Deep learning for super-resolution localization microscopy
    Zhou, Tianyang
    Luo, Jianwen
    Liu, Xin
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS VIII, 2018, 10820
  • [3] Super-Resolution Ultrasound Localization Microscopy Through Deep Learning
    van Sloun, Ruud J. G.
    Solomon, Oren
    Bruce, Matthew
    Khaing, Zin Z.
    Wijkstra, Hessel
    Eldar, Yonina C.
    Mischi, Massimo
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (03) : 829 - 839
  • [4] Deep learning massively accelerates super-resolution localization microscopy
    Wei Ouyang
    Andrey Aristov
    Mickaël Lelek
    Xian Hao
    Christophe Zimmer
    Nature Biotechnology, 2018, 36 : 460 - 468
  • [5] Deep learning massively accelerates super-resolution localization microscopy
    Ouyang, Wei
    Aristov, Andrey
    Lelek, Mickael
    Hao, Xian
    Zimmer, Christophe
    NATURE BIOTECHNOLOGY, 2018, 36 (05) : 460 - +
  • [6] A Deep Learning Framework for Spatiotemporal Ultrasound Localization Microscopy
    Milecki, Leo
    Poree, Jonathan
    Belgharbi, Hatim
    Bourquin, Chloe
    Damseh, Rafat
    Delafontaine-Martel, Patrick
    Lesage, Frederic
    Gasse, Maxime
    Provost, Jean
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (05) : 1428 - 1437
  • [7] Optical Flow Assisted Super-Resolution Ultrasound Localization Microscopy using Deep Learning
    Lee, Hyeonjik
    Oh, Seok-Hwan
    Kim, Myeong-Gee
    Kim, Young-Min
    Jung, Guil
    Bae, Hyeon-Min
    2022 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IEEE IUS), 2022,
  • [8] 3-D super-resolution localization microscopy using deep learning method
    Lu, Mengyang
    Zhou, Tianyang
    Liu, Xin
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS IX, 2020, 11190
  • [9] Super-resolution spectroscopic microscopy via photon localization
    Biqin Dong
    Luay Almassalha
    Ben E. Urban
    The-Quyen Nguyen
    Satya Khuon
    Teng-Leong Chew
    Vadim Backman
    Cheng Sun
    Hao F. Zhang
    Nature Communications, 7
  • [10] Super-resolution spectroscopic microscopy via photon localization
    Dong, Biqin
    Almassalha, Luay
    Urban, Ben E.
    The-Quyen Nguyen
    Khuon, Satya
    Chew, Teng-Leong
    Backman, Vadim
    Sun, Cheng
    Zhang, Hao F.
    NATURE COMMUNICATIONS, 2016, 7