An experimental study on gas-liquid two-phase countercurrent flow limitations of vertical pipes

被引:4
|
作者
Ma, Youfu [1 ]
Zeng, Shanshan [1 ]
Shao, Jie [1 ]
Zhou, Tuo [2 ]
Lyu, Junfu [2 ]
Li, Jingfen [3 ]
Lu, Peng [3 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai Key Lab Multiphase Flow & Heat Transfer P, Shanghai 200093, Peoples R China
[2] Tsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
[3] Shanghai Marine Diesel Engine Res Inst, Shanghai 201108, Peoples R China
关键词
Gas-liquid flow; CCFL; Vertical pipe; Prediction model; Correlation; AIR-WATER; DUCTS;
D O I
10.1016/j.expthermflusci.2022.110789
中图分类号
O414.1 [热力学];
学科分类号
摘要
The gas-liquid two-phase countercurrent flow limitation (CCFL) of vertical pipes is an important subject of concern in various industries. Predicting the CCFL of vertical pipes, i.e. the flow rate relationship between the gas and liquid phases under CCFL conditions, has not yet been clearly determined on effects of the structural pa-rameters of the pipe. In this study, a visualization experiment on the CCFL of vertical pipes was performed by using air and water as the two phases. The effects of pipe diameter and pipe length were tested in the ranges of 25-100 mm and 0.50-2.0 m, respectively. Based on the experimental result, the flow behaviors of the CCFL in vertical pipes were analyzed, and four existing CCFL correlation models were examined in their capabilities to correlate the effects of pipe diameter and pipe length. The result shows that the flow patterns in vertical pipes are essentially annular flows and annular-mist flows under CCFL conditions, and the flow behaviors on gas-liquid interface present different features as the pipe differed in diameters. Examination of the available CCFL models indicates that none of them has reached a satisfactory correlation on the effects of pipe diameter and pipe length. Consequently, based on a reasonable fluid mechanics analysis, a novel CCFL correlation model that can correlate the effects of pipe diameter and pipe length was advanced. This model provides a reasonable and accurate prediction of the CCFL of vertical pipes when the pipe varies in structural parameters, which is of great sig-nificance to the safe and efficient operation of the related equipment in nuclear power generation, natural gas extraction and chemical industries.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Initiation conditions of liquid ascent of the countercurrent two-phase flow in vertical pipes (in the presence of two-phase mixture in the lower portion)
    Koizumi, Y
    Ueda, T
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1996, 22 (01) : 31 - 43
  • [32] Gas-liquid two-phase flow measure',ment with dual-plane ERT system in vertical pipes
    Tan Chao
    Dong Feng
    Hua Shuang
    Qi Guohua
    MULTIPHASE FLOW: THE ULTIMATE MEASUREMENT CHALLENGE, PROCEEDINGS, 2007, 914 : 734 - +
  • [33] Experimental Study of Pressure Losses in a Two-Phase Flow in Vertical Pipes
    Volgina L.V.
    Gusev I.A.
    Power Technology and Engineering, 2022, 56 (01) : 11 - 14
  • [34] Effects of liquid viscosity on flow patterns in vertical upward gas-liquid two-phase flow
    Furukawa, T
    Fukano, T
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2001, 27 (06) : 1109 - 1126
  • [35] Prediction of the entrained liquid fraction in vertical annular gas-liquid two-phase flow
    Cioncolini, Andrea
    Thome, John R.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2010, 36 (04) : 293 - 302
  • [36] VELOCITY OF LIQUID LUMPS IN VERTICAL UPWARD GAS-LIQUID TWO-PHASE FLOW.
    Takeishi, Masayuki
    Shimizu, Hideo
    Nakasatomi, Masao
    Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B, 1987, 53 (493): : 2800 - 2806
  • [37] Study of drag reduction characteristics of gas-liquid two phase flow in horizontal, inclined and vertical pipes
    Li, Cao
    Liu, Lei
    Guo, Xin-Feng
    Guo, Qiu-Yue
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2010, 31 (08): : 1339 - 1342
  • [38] Investigation of flow pattern transition for gas-liquid two-phase flow in horizontal rolling pipes
    College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001, China
    Harbin Gongcheng Daxue Xuebao, 2008, 10 (1050-1053):
  • [39] Influence of vibration on transient flow characteristics of gas-liquid two-phase flow in inclined pipes
    Bao, Yangyang
    Ma, Tingxia
    Zhang, Yao
    Wang, Lin
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 196 : 71 - 88
  • [40] BASIC EQUATIONS OF SLUG FLOW: STUDIES ON TWO-PHASE GAS-LIQUID FLOW IN VERTICAL PIPES (3RD REPORT).
    Hatakeyama, Nobuo
    Noda, Karoku
    Nihon Kogyokaishi, 1987, 103 (1195): : 563 - 569