共 50 条
Bacteria-responsive programmed self-activating antibacterial hydrogel to remodel regeneration microenvironment for infected wound healing
被引:85
|作者:
Yang, Yutong
[1
,2
,3
]
Wang, Jiaxin
[1
,2
,3
]
Huang, Shengfei
[1
,2
,3
]
Li, Meng
[1
,2
,3
]
Chen, Jueying
[1
,2
,3
]
Pei, Dandan
[1
,2
,3
]
Tang, Zhen
[4
]
Guo, Baolin
[1
,2
,3
,5
]
机构:
[1] Xi An Jiao Tong Univ, Coll Stomatol, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Coll Stomatol, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, Coll Stomatol, Key Lab Shaanxi Prov Craniofacial Precis Med Res, Xian 710049, Peoples R China
[4] Fourth Mil Med Univ, Tangdu Hosp, Dept Orthoped, Xian 710038, Peoples R China
[5] Xi An Jiao Tong Univ, Dept Oncol, Affiliated Hosp 1, Xian 710061, Peoples R China
基金:
中国国家自然科学基金;
关键词:
bacterial response;
hydrogel dressing;
multiple nanozyme activity;
biofilm elimination;
infected motion wound healing;
ADHESION;
COPPER;
IONS;
D O I:
10.1093/nsr/nwae044
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
There is still an urgent need to develop hydrogels with intelligent antibacterial ability to achieve on-demand treatment of infected wounds and accelerate wound healing by improving the regeneration microenvironment. We proposed a strategy of hydrogel wound dressing with bacteria-responsive self-activating antibacterial property and multiple nanozyme activities to remodel the regeneration microenvironment in order to significantly promote infected wound healing. Specifically, pH-responsive H2O2 self-supplying composite nanozyme (MSCO) and pH/enzyme-sensitive bacteria-responsive triblock micelles encapsulated with lactate oxidase (PPEL) were prepared and encapsulated in hydrogels composed of L-arginine-modified chitosan (CA) and phenylboronic acid-modified oxidized dextran (ODP) to form a cascade bacteria-responsive self-activating antibacterial composite hydrogel platform. The hydrogels respond to multifactorial changes of the bacterial metabolic microenvironment to achieve on-demand antibacterial and biofilm eradication through transformation of bacterial metabolites, and chemodynamic therapy enhanced by nanozyme activity in conjunction with self-driven nitric oxide (NO) release. The composite hydrogel showed 'self-diagnostic' treatment for changes in the wound microenvironment. Through self-activating antibacterial therapy in the infection stage to self-adaptive oxidative stress relief and angiogenesis in the post-infection stage, it promotes wound closure, accelerates wound collagen deposition and angiogenesis, and completely improves the microenvironment of infected wound regeneration, which provides a new method for the design of intelligent wound dressings. A self-activated on-demand antibacterial hydrogel based on bacterial infection microenvironment response is proposed for remodeling the regenerative microenvironment of infected motion wounds and accelerating wound healing.
引用
收藏
页数:17
相关论文