Simple and Versatile Platforms for Manipulating Light with Matter: Strong Light-Matter Coupling in Fully Solution-Processed Optical Microcavities

被引:8
|
作者
Strang, Andrew [1 ,2 ]
Quiros-Cordero, Victoria [3 ]
Gregoire, Pascal [4 ]
Pla, Sara [5 ]
Fernandez-Lazaro, Fernando [5 ]
Sastre-Santos, Angela [5 ]
Silva-Acuna, Carlos [6 ,7 ]
Stavrinou, Paul N. [8 ]
Stingelin, Natalie [3 ,9 ]
机构
[1] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[2] Imperial Coll London, Ctr Plast Elect, London SW7 2AZ, England
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[4] Univ Montreal, Succursale Ctr ville, Dept Phys & Regroupement Quebecois Mat Pointe, Case Postale 6128, Montreal, PQ H3C 3J7, Canada
[5] Univ Miguel Hernandez, Area Quim Organ, Inst Bioingn, Elche 03202, Spain
[6] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[7] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[8] Univ Oxford, Dept Engn Sci, Informat Engn Bldg,9 Pk Rd, Oxford OX1 3PD, England
[9] Georgia Inst Technol, Sch Chem & Biochem Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会; 欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
exciton-polaritons; perylene diimide; solution-processed microcavities; strong light-matter coupling; EXCITON-POLARITONS; QUANTUM; EMISSION; FILTERS;
D O I
10.1002/adma.202212056
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Planar microcavities with strong light-matter coupling, monolithically processed fully from solution, consisting of two polymer-based distributed Bragg reflectors (DBRs) comprising alternating layers of a high-refractive-index titanium oxide hydrate/poly(vinyl alcohol) hybrid material and a low-refractive-index fluorinated polymer are presented. The DBRs enclose a perylene diimide derivative (b-PDI-1) film positioned at the antinode of the optical mode. Strong light-matter coupling is achieved in these structures at the target excitation of the b-PDI-1. Indeed, the energy-dispersion relation (energy vs in-plane wavevector or output angle) in reflectance and the group delay of transmitted light in the microcavities show a clear anti-crossing-an energy gap between two distinct exciton-polariton dispersion branches. The agreement between classical electrodynamic simulations of the microcavity response and the experimental data demonstrates that the entire microcavity stack can be controllably produced as designed. Promisingly, the refractive index of the inorganic/organic hybrid layers used in the microcavity DBRs can be precisely manipulated between values of 1.50 to 2.10. Hence, microcavities with a wide spectral range of optical modes might be designed and produced with straightforward coating methodologies, enabling fine-tuning of the energy and lifetime of the microcavities' optical modes to harness strong light-matter coupling in a wide variety of solution processable active materials.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Light-matter strong coupling in the mid-infrared region with metallic microcavities.
    Jouy, Pierre
    Todorov, Yanko
    Vasanelli, Angela
    Biasiol, Giorgio
    Colombelli, Raffaele
    Sirtori, Carlo
    2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [22] Light-matter interaction in doped microcavities
    Averkiev, N. S.
    Glazov, M. M.
    PHYSICAL REVIEW B, 2007, 76 (04):
  • [23] Enhanced optical nonlinearities under collective strong light-matter coupling
    Ribeiro, Raphael F.
    Campos-Gonzalez-Angulo, Jorge A.
    Giebink, Noel C.
    Xiong, Wei
    Yuen-Zhou, Joel
    PHYSICAL REVIEW A, 2021, 103 (06)
  • [24] Manipulation of Chiral Nonlinear Optical Effect by Light-Matter Strong Coupling
    Okada, Daichi
    Araoka, Fumito
    NANO LETTERS, 2024, 24 (24) : 7443 - 7450
  • [25] Manipulating light-matter interaction into strong coupling regime for photon entanglement in plasmonic lattices
    Wang, Zhihang
    Li, Lingyao
    Wei, Shibo
    Shi, Xiaoqi
    Xiao, Jiamin
    Guo, Zhicheng
    Wang, Wei
    Wang, Yi
    Wang, Wenxin
    JOURNAL OF APPLIED PHYSICS, 2023, 133 (06)
  • [26] Graphene plasmons and retardation: Strong light-matter coupling
    Gomez-Santos, G.
    Stauber, T.
    EPL, 2012, 99 (02)
  • [27] Strong light-matter coupling in MoS2
    Kusch, Patryk
    Mueller, Niclas S.
    Hartmann, Martin T.
    Reich, Stephanie
    PHYSICAL REVIEW B, 2021, 103 (23)
  • [28] Microfluidics and Nanofluidics in Strong Light-Matter Coupling Systems
    Granizo, Evelyn
    Kriukova, Irina
    Escudero-Villa, Pedro
    Samokhvalov, Pavel
    Nabiev, Igor
    NANOMATERIALS, 2024, 14 (18)
  • [29] Experimental observation of strong light-matter coupling in ZnO microcavities: Influence of large excitonic absorption
    Medard, F.
    Zuniga-Perez, J.
    Disseix, P.
    Mihailovic, M.
    Leymarie, J.
    Vasson, A.
    Semond, F.
    Frayssinet, E.
    Moreno, J. C.
    Leroux, M.
    Faure, S.
    Guillet, T.
    PHYSICAL REVIEW B, 2009, 79 (12):
  • [30] Photon Correlations in Systems with Strong Light-Matter Coupling
    Schneebeli, L.
    Kira, M.
    Koch, S. W.
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 1856 - +