Urban Built Environment Assessment Based on Scene Understanding of High-Resolution Remote Sensing Imagery

被引:5
|
作者
Chen, Jie [1 ]
Dai, Xinyi [1 ]
Guo, Ya [1 ]
Zhu, Jingru [1 ]
Mei, Xiaoming [1 ]
Deng, Min [1 ]
Sun, Geng [1 ]
机构
[1] Cent South Univ, Sch Geosci & Info Phys, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing; urban-built-environment assessment; spatial cognition; image understanding; GOOGLE STREET VIEW; PHYSICAL-ACTIVITY; QUALITIES; HEALTH; CITY; SUSTAINABILITY; SATISFACTION; WALKABILITY; PERCEPTIONS; INDICATORS;
D O I
10.3390/rs15051436
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A high-quality built environment is important for human health and well-being. Assessing the quality of the urban built environment can provide planners and managers with decision-making for urban renewal to improve resident satisfaction. Many studies evaluate the built environment from the perspective of street scenes, but it is difficult for street-view data to cover every area of the built environment and its update frequency is low, which cannot meet the requirement of built-environment assessment under rapid urban development. Earth-observation data have the advantages of wide coverage, high update frequency, and good availability. This paper proposes an intelligent evaluation method for urban built environments based on scene understanding of high-resolution remote-sensing images. It contributes not only the assessment criteria for the built environment in remote-sensing images from the perspective of visual cognition but also an image-caption dataset applicable to urban-built-environment assessment. The results show that the proposed deep-learning-driven method can provide a feasible paradigm for representing high-resolution remote-sensing image scenes and large-scale urban-built-area assessment.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] RAPID DAMAGE ASSESSMENT USING HIGH-RESOLUTION REMOTE SENSING IMAGERY: TOOLS AND TECHNIQUES
    Vatsavai, R.
    Tuttle, M.
    Bhaduri, B.
    Bright, E.
    Cheriyadat, A.
    Chandola, V.
    Graesser, J.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1445 - 1448
  • [22] A Partition-Based Detection of Urban Villages Using High-Resolution Remote Sensing Imagery in Guangzhou, China
    Zhao, Lu
    Ren, Hongyan
    Cui, Cheng
    Huang, Yaohuan
    REMOTE SENSING, 2020, 12 (14)
  • [23] Automatic urban area extraction using a Gabor filter and high-resolution remote sensing imagery
    Chen, H. (hong05060922@163.com), 1600, Editorial Board of Medical Journal of Wuhan University (38):
  • [24] Research on Scene Classification Method of High-Resolution Remote Sensing Images Based on RFPNet
    Zhang, Xin
    Wang, Yongcheng
    Zhang, Ning
    Xu, Dongdong
    Chen, Bo
    APPLIED SCIENCES-BASEL, 2019, 9 (10):
  • [25] High-Resolution Mapping of the Urban Built Environment Stocks in Beijing
    Mao, Ruichang
    Bao, Yi
    Huang, Zhou
    Liu, Qiance
    Liu, Gang
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (09) : 5345 - 5355
  • [26] Change Detection Based on Supervised Contrastive Learning for High-Resolution Remote Sensing Imagery
    Wang, Jue
    Zhong, Yanfei
    Zhang, Liangpei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [27] Transformer-Based Cloud Detection Method for High-Resolution Remote Sensing Imagery
    Tan, Haotang
    Sun, Song
    Cheng, Tian
    Shu, Xiyuan
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 661 - 678
  • [28] Research on Building Target Detection Based on High-Resolution Optical Remote Sensing Imagery
    Mei, Yong
    Chen, Hao
    Yang, Shuting
    ALGORITHMS, 2021, 14 (10)
  • [29] Multitemporal greenhouse mapping for high-resolution remote sensing imagery based on an improved YOLOX
    Hong, Ruikai
    Xiao, Bin
    Yan, He
    Liu, Jiamin
    Liu, Pu
    Song, Zhihua
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 206
  • [30] YOLOv4-Lite-Based Urban Plantation Tree Detection and Positioning With High-Resolution Remote Sensing Imagery
    Zheng, Yueyuan
    Wu, Gang
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 9