Electrostatic Embedding of Machine Learning Potentials

被引:21
|
作者
Zinovjev, Kirill [1 ]
机构
[1] Univ Valencia, Dept Quim Fis, Burjassot 46100, Spain
基金
英国工程与自然科学研究理事会;
关键词
QM/MM METHODS; MOLECULES; MODEL;
D O I
10.1021/acs.jctc.2c00914
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work presents a variant of an electrostatic embedding scheme that allows the embedding of arbitrary machine learned potentials trained on molecular systems in vacuo. The scheme is based on physically motivated models of electronic density and polarizability, resulting in a generic model without relying on an exhaustive training set. The scheme only requires in vacuo single point QM calculations to provide training densities and molecular dipolar polarizabilities. As an example, the scheme is applied to create an embedding model for the QM7 data set using Gaussian Process Regression with only 445 reference atomic environments. The model was tested on the SARS-CoV-2 protease complex with PF-00835231, resulting in a predicted embedding energy RMSE of 2 kcal/mol, compared to explicit DFT/MM calculations.
引用
收藏
页码:1888 / 1897
页数:10
相关论文
共 50 条
  • [31] Machine-learning potentials for crystal defects
    Rodrigo Freitas
    Yifan Cao
    MRS Communications, 2022, 12 : 510 - 520
  • [32] Construction of Machine Learning Interatomic Potentials for Metals
    Dmitriev, S. V.
    Kistanov, A. A.
    Kosarev, I. V.
    Scherbinin, S. A.
    Shapeev, A. V.
    RUSSIAN PHYSICS JOURNAL, 2024, 67 (09) : 1408 - 1413
  • [33] Machine-learning potentials for crystal defects
    Freitas, Rodrigo
    Cao, Yifan
    MRS COMMUNICATIONS, 2022, 12 (05) : 510 - 520
  • [34] Spatially Resolved Uncertainties for Machine Learning Potentials
    Heid, Esther
    Schoerghuber, Johannes
    Wanzenboeck, Ralf
    Madsen, Georg K. H.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (16) : 6377 - 6387
  • [35] Machine learning potentials for extended systems: a perspective
    Jörg Behler
    Gábor Csányi
    The European Physical Journal B, 2021, 94
  • [36] Machine Learning Interatomic Potentials for Heterogeneous Catalysis
    Tang, Deqi
    Ketkaew, Rangsiman
    Luber, Sandra
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (60)
  • [37] Machine Learning-Based Embedding for Discontinuous Time Series Machine Data
    Aremu, Oluseun Omotola
    Hyland-Wood, David
    McAree, Peter Ross
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 1321 - 1326
  • [38] Application of word embedding and machine learning in detecting phishing websites
    Routhu Srinivasa Rao
    Amey Umarekar
    Alwyn Roshan Pais
    Telecommunication Systems, 2022, 79 : 33 - 45
  • [39] Adopting and Embedding Machine Learning Algorithms in Microcontroller for Weather Prediction
    Karvelis, Petros
    Michail, Theofanis-Aristofanis
    Mazzei, Daniele
    Petsios, Stefanos
    Bau, Andrea
    Montelisciani, Gabriele
    Stylios, Chrysostomos
    2018 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS (IS), 2018, : 474 - 478
  • [40] Application of word embedding and machine learning in detecting phishing websites
    Rao, Routhu Srinivasa
    Umarekar, Amey
    Pais, Alwyn Roshan
    TELECOMMUNICATION SYSTEMS, 2022, 79 (01) : 33 - 45