Electrostatic Embedding of Machine Learning Potentials

被引:21
|
作者
Zinovjev, Kirill [1 ]
机构
[1] Univ Valencia, Dept Quim Fis, Burjassot 46100, Spain
基金
英国工程与自然科学研究理事会;
关键词
QM/MM METHODS; MOLECULES; MODEL;
D O I
10.1021/acs.jctc.2c00914
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work presents a variant of an electrostatic embedding scheme that allows the embedding of arbitrary machine learned potentials trained on molecular systems in vacuo. The scheme is based on physically motivated models of electronic density and polarizability, resulting in a generic model without relying on an exhaustive training set. The scheme only requires in vacuo single point QM calculations to provide training densities and molecular dipolar polarizabilities. As an example, the scheme is applied to create an embedding model for the QM7 data set using Gaussian Process Regression with only 445 reference atomic environments. The model was tested on the SARS-CoV-2 protease complex with PF-00835231, resulting in a predicted embedding energy RMSE of 2 kcal/mol, compared to explicit DFT/MM calculations.
引用
收藏
页码:1888 / 1897
页数:10
相关论文
共 50 条
  • [1] Accurate Fourth-Generation Machine Learning Potentials by Electrostatic Embedding
    Ko, Tsz Wai
    Finkler, Jonas A.
    Goedecker, Stefan
    Behler, Joerg
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (12) : 3567 - 3579
  • [2] Accuracy of Protein Embedding Potentials: An Analysis in Terms of Electrostatic Potentials
    Olsen, Jogvan Magnus Haugaard
    List, Nanna Holmgaard
    Kristensen, Kasper
    Kongsted, Jacob
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2015, 11 (04) : 1832 - 1842
  • [3] Electrostatic embedding machine learning for ground and excited state molecular dynamics of solvated molecules
    Mazzeo, Patrizia
    Cignoni, Edoardo
    Arcidiacono, Amanda
    Cupellini, Lorenzo
    Mennucci, Benedetta
    DIGITAL DISCOVERY, 2024, 3 (12): : 2560 - 2571
  • [4] Assessment of Embedding Schemes in a Hybrid Machine Learning/Classical Potentials (ML/MM) Approach
    Grassano, Juan S.
    Pickering, Ignacio
    Roitberg, Adrian E.
    Gonzalez Lebrero, Mariano C.
    Estrin, Dario A.
    Semelak, Jonathan A.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (10) : 4047 - 4058
  • [5] emle-engine: A Flexible Electrostatic Machine Learning Embedding Package for Multiscale Molecular Dynamics Simulations
    Zinovjev, Kirill
    Hedges, Lester
    Montagud Andreu, Ruben
    Woods, Christopher
    Tunon, Inaki
    van der Kamp, Marc W.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (11) : 4514 - 4522
  • [6] Quantum word embedding for machine learning
    Nguyen, Phuong-Nam
    PHYSICA SCRIPTA, 2024, 99 (08)
  • [7] Experimental Quantum Embedding for Machine Learning
    Gianani, Ilaria
    Mastroserio, Ivana
    Buffoni, Lorenzo
    Bruno, Natalia
    Donati, Ludovica
    Cimini, Valeria
    Barbieri, Marco
    Cataliotti, Francesco S.
    Caruso, Filippo
    ADVANCED QUANTUM TECHNOLOGIES, 2022, 5 (08)
  • [8] Lifelong Machine Learning Potentials
    Eckhoff, Marco
    Reiher, Markus
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (12) : 3509 - 3525
  • [9] Machine Learning of Reactive Potentials
    Yang, Yinuo
    Zhang, Shuhao
    Ranasinghe, Kavindri D.
    Isayev, Olexandr
    Roitberg, Adrian E.
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2024, 75 : 371 - 395
  • [10] MACHINE LEARNING POTENTIALS FOR GRAPHENE
    Singh, Akash
    Li, Yumeng
    PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 3, 2022,