Deep learning-based vehicle trajectory prediction based on generative adversarial network for autonomous driving applications

被引:8
|
作者
Hsu, Chih-Chung [1 ]
Kang, Li-Wei [2 ]
Chen, Shih-Yu [3 ]
Wang, I-Shan [3 ]
Hong, Ching-Hao [4 ]
Chang, Chuan-Yu [3 ]
机构
[1] Natl Cheng Kung Univ, Inst Data Sci, Tainan, Taiwan
[2] Natl Taiwan Normal Univ, Dept Elect Engn, Taipei, Taiwan
[3] Natl Yunlin Univ Sci & Technol, Dept Comp Sci & Informat Engn, Touliu, Yunlin, Taiwan
[4] Natl Pingtung Univ Sci & Technol, Dept Management Informat Syst, Pingtung, Taiwan
关键词
Autonomous vehicles; Self-driving cars; Vehicle trajectory; Deep learning; Generative adversarial networks; Deep social learning networks; BEHAVIOR;
D O I
10.1007/s11042-022-13742-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Autonomous vehicles need to continuously navigate complex traffic environments by efficiently analyzing the surrounding scene, understanding the behavior of other traffic agents, and predicting their future trajectories. The primary objective is to draw up a safe motion and reduce the reaction time for possibly imminent hazards. The main problem addressed in this paper is to explore the movement patterns of surrounding traffic-agents and accurately predict their future trajectories for assisting the vehicle to make a reasonable decision. Traditional trajectory prediction modules require explicit coordinate information to model the interaction between the autonomous car and its surrounding vehicles. However, it is hard to know the real coordinate of surrounding vehicles in real-world scenarios without communications between vehicles. A GAN (generative adversarial network)-based deep learning framework is presented in this paper for predicting the trajectories of surrounding vehicles of an autonomous vehicle in an RGB image sequence without explicit coordinate annotation to solve this problem. To automatically predict the trajectory from RGB image sequences, a coordinate augmentation module and a coordinate stabilization module are proposed to extract the historical trajectory from an image sequence. Meanwhile, the self-attention mechanism is also proposed to improve the social pooling module for better capturing the context information of trajectories of surrounding vehicles. Experimental results are demonstrated that the proposed method is effective and efficient.
引用
收藏
页码:10763 / 10780
页数:18
相关论文
共 50 条
  • [21] Research on Trajectory Prediction of Vehicle Lane Change for Autonomous Driving Based on Inverse Reinforcement Learning
    Zhan, Ming
    Fan, Jingjing
    Jin, Linhao
    SEVENTH INTERNATIONAL CONFERENCE ON TRAFFIC ENGINEERING AND TRANSPORTATION SYSTEM, ICTETS 2023, 2024, 13064
  • [22] Learning-Based Stochastic Driving Model for Autonomous Vehicle Testing
    Liu, Lin
    Feng, Shuo
    Feng, Yiheng
    Zhu, Xichan
    Liu, Henry X.
    TRANSPORTATION RESEARCH RECORD, 2022, 2676 (01) : 54 - 64
  • [23] Deep Learning-based Heading Angle Estimation for Enhanced Autonomous Vehicle Backward Driving Control
    Jeong Ku Kim
    Dong-wook Kwon
    Seul Jung
    International Journal of Control, Automation and Systems, 2025, 23 (4) : 1210 - 1219
  • [24] Deep Learning-Based Driving Maneuver Prediction System
    Ou, Chaojie
    Karray, Fakhri
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (02) : 1328 - 1340
  • [25] Deep-KEDI: Deep learning-based zigzag generative adversarial network for encryption and decryption of medical images
    Selvakumar, K.
    Lokesh, S.
    TECHNOLOGY AND HEALTH CARE, 2024, 32 (05) : 3231 - 3251
  • [26] Vehicle Lane-Change Trajectory Prediction Model Based on Generative Adversarial Networks
    Wen H.
    Zhang W.
    Zhao S.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2020, 48 (05): : 32 - 40
  • [27] SA-SGAN: A Vehicle Trajectory Prediction Model Based on Generative Adversarial Networks
    Zhou, Danyang
    Wang, Huxiao
    Li, Wei
    Zhou, Yi
    Cheng, Nan
    Lu, Ning
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [28] Graph-Based Spatial-Temporal Convolutional Network for Vehicle Trajectory Prediction in Autonomous Driving
    Sheng, Zihao
    Xu, Yunwen
    Xue, Shibei
    Li, Dewei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 17654 - 17665
  • [29] Generative Adversarial Network-based Deep Learning Framework for Cardiovascular Disease Risk Prediction
    Bhagawati, Mrinalini
    Paul, Sudip
    2024 5TH INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY, ICITIIT 2024, 2024,
  • [30] Federated Learning-based Vehicle Trajectory Prediction against Cyberattacks
    Wang, Zhe
    Yan, Tingkai
    2023 IEEE 29TH INTERNATIONAL SYMPOSIUM ON LOCAL AND METROPOLITAN AREA NETWORKS, LANMAN, 2023,