Branching Process for Infectious Disease Modeling

被引:0
|
作者
Hart, Andrew [1 ]
Martinez, Servet [1 ]
机构
[1] Univ Chile, Ctr Math Modeling, Fac Ciencias Fis & Matemat, CNRS,UCHILE,IRL 2807, Santiago, Chile
关键词
delayed multi-type branching process; Perron-Frobenius theory; Malthu- sian parameter; infectious disease modeling;
D O I
10.61102/1024-2953-mprf.2023.29.5.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a model for the spread of an infectious disease which incorporates spatial and temporal effects. The model is a delayed multi-type branching process in which types represent geographic regions while infected individuals reproduce offspring during a finite time interval and have convalescence times and random death/recovery outcomes. We give simple expressions for the limit of the geometrically weighted mean evolution of the process.
引用
收藏
页数:110
相关论文
共 50 条
  • [21] Big Data for Infectious Disease Surveillance and Modeling
    Bansal, Shweta
    Chowell, Gerardo
    Simonsen, Lone
    Vespignani, Alessandro
    Viboud, Cecile
    JOURNAL OF INFECTIOUS DISEASES, 2016, 214 : S375 - S379
  • [22] USE OF MODELING IN INFECTIOUS-DISEASE EPIDEMIOLOGY
    KING, ME
    SOSKOLNE, CL
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 1988, 128 (05) : 949 - 961
  • [23] Mathematical modeling of infectious disease transmission in macroalgae
    Artorn Nokkaew
    Charin Modchang
    Somkid Amornsamankul
    Yongwimon Lenbury
    Busayamas Pimpunchat
    Wannapong Triampo
    Advances in Difference Equations, 2017
  • [24] Editorial: Mathematical modeling of infectious disease dynamics
    Siettos, Constantinos I.
    VIRULENCE, 2016, 7 (02) : 119 - 120
  • [25] A new approach to the dynamic modeling of an infectious disease
    Shayak, B.
    Sharma, Mohit M.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2021, 16
  • [26] Human Mobility Driven Modeling of an Infectious Disease
    Villanueva-Miranda, Ismael
    Hossain, M. Shahriar
    Akbar, Monika
    2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW, 2022, : 1189 - 1196
  • [27] Infectious Disease Modeling of Social Contagion in Networks
    Hill, Alison L.
    Rand, David G.
    Nowak, Martin A.
    Christakis, Nicholas A.
    PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (11)
  • [28] Mathematical modeling of infectious disease transmission in macroalgae
    Nokkaew, Artorn
    Modchang, Charin
    Amornsamankul, Somkid
    Lenbury, Yongwimon
    Pimpunchat, Busayamas
    Triampo, Wannapong
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [29] USE OF MODELING IN INFECTIOUS-DISEASE EPIDEMIOLOGY
    KLAR, N
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 1990, 131 (05) : 942 - 943
  • [30] The distribution of time to extinction in subcritical branching processes: Applications to outbreaks of infectious disease
    Farrington, CP
    Grant, AD
    JOURNAL OF APPLIED PROBABILITY, 1999, 36 (03) : 771 - 779