Branching Process for Infectious Disease Modeling

被引:0
|
作者
Hart, Andrew [1 ]
Martinez, Servet [1 ]
机构
[1] Univ Chile, Ctr Math Modeling, Fac Ciencias Fis & Matemat, CNRS,UCHILE,IRL 2807, Santiago, Chile
关键词
delayed multi-type branching process; Perron-Frobenius theory; Malthu- sian parameter; infectious disease modeling;
D O I
10.61102/1024-2953-mprf.2023.29.5.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study a model for the spread of an infectious disease which incorporates spatial and temporal effects. The model is a delayed multi-type branching process in which types represent geographic regions while infected individuals reproduce offspring during a finite time interval and have convalescence times and random death/recovery outcomes. We give simple expressions for the limit of the geometrically weighted mean evolution of the process.
引用
收藏
页数:110
相关论文
共 50 条