LSD-YOLOv5: A Steel Strip Surface Defect Detection Algorithm Based on Lightweight Network and Enhanced Feature Fusion Mode

被引:17
|
作者
Zhao, Huan [1 ]
Wan, Fang [1 ]
Lei, Guangbo [1 ]
Xiong, Ying [1 ]
Xu, Li [1 ]
Xu, Chengzhi [1 ]
Zhou, Wen [1 ]
机构
[1] Hubei Univ Technol, Sch Comp Sci, Wuhan 430068, Peoples R China
基金
中国国家自然科学基金;
关键词
surface defect detection; YOLOv5s; Stem block; MobileNetV2; bottleneck; multi-scale feature fusion; CLASSIFICATION; RECOGNITION;
D O I
10.3390/s23146558
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In the field of metallurgy, the timely and accurate detection of surface defects on metallic materials is a crucial quality control task. However, current defect detection approaches face challenges with large model parameters and low detection rates. To address these issues, this paper proposes a lightweight recognition model for surface damage on steel strips, named LSD-YOLOv5. First, we design a shallow feature enhancement module to replace the first Conv structure in the backbone network. Second, the Coordinate Attention mechanism is introduced into the MobileNetV2 bottleneck structure to maintain the lightweight nature of the model. Then, we propose a smaller bidirectional feature pyramid network (BiFPN-S) and combine it with Concat operation for efficient bidirectional cross-scale connectivity and weighted feature fusion. Finally, the Soft-DIoU-NMS algorithm is employed to enhance the recognition efficiency in scenarios where targets overlap. Compared with the original YOLOv5s, the LSD-YOLOv5 model achieves a reduction of 61.5% in model parameters and a 28.7% improvement in detection speed, while improving recognition accuracy by 2.4%. This demonstrates that the model achieves an optimal balance between detection accuracy and speed, while maintaining a lightweight structure.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Strip steel surface defect detection based on lightweight YOLOv5
    Zhang, Yongping
    Shen, Sijie
    Xu, Sen
    FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [2] Lightweight strip steel surface defect detection algorithm based on YOLOv8-VRLG
    Zhou, Hao
    Zhang, Yongping
    Yan, Cheng
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (06)
  • [3] A Lightweight Strip Steel Surface Defect Detection Network Based on Improved YOLOv8
    Chu, Yuqun
    Yu, Xiaoyan
    Rong, Xianwei
    SENSORS, 2024, 24 (19)
  • [4] Lightweight strip steel defect detection algorithm based on improved YOLOv7
    Lu, Jianbo
    Yu, MiaoMiao
    Liu, Junyu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] Insulator defect detection algorithm based on adaptive feature fusion and lightweight YOLOv5s
    He, Zhendong
    Wang, Yiming
    Zheng, Anping
    Liu, Jie
    Lou, Taishan
    Zhang, Jie
    Jiang, Penghao
    Xu, Jiong
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (01)
  • [6] Strip Surface Defect Detection Algorithm Based on YOLOv5
    Wang, Han
    Yang, Xiuding
    Zhou, Bei
    Shi, Zhuohao
    Zhan, Daohua
    Huang, Renbin
    Lin, Jian
    Wu, Zhiheng
    Long, Danfeng
    MATERIALS, 2023, 16 (07)
  • [7] Lightweight-detection: The strip steel surface defect identification based on improved YOLOv5d
    Lu, Yan
    Huang, Zhi-Chao
    Jiang, Yu-Qiang
    Liu, Guang-Rui
    Wang, Jia-Xuan
    Ma, Qi-Ming
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [8] Lightweight Surface Defect Detection Algorithm Based on Improved YOLOv5
    Yang, Kaijun
    Chen, Tao
    2024 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS TECHNOLOGY AND INTELLIGENT MANUFACTURING, ICMTIM 2024, 2024, : 798 - 802
  • [9] SF-YOLOv5: A Lightweight Small Object Detection Algorithm Based on Improved Feature Fusion Mode
    Liu, Haiying
    Sun, Fengqian
    Gu, Jason
    Deng, Lixia
    SENSORS, 2022, 22 (15)
  • [10] Strip Steel Surface Defect Detection Based on Improved YOLOv3 Algorithm
    Li W.-G.
    Ye X.
    Zhao Y.-T.
    Wang W.-B.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (07): : 1284 - 1292