Extensions of a residually finite group by a weakly sofic group are weakly sofic

被引:0
|
作者
Glebsky, Lev [1 ]
机构
[1] Univ Autonoma San Luis Potosi, Inst Invest Comunicac Opt, Ave Karakorum 1470,Lomas 4a, San Luis Potosi 78210, Mexico
关键词
Weakly sofic groups; group extension;
D O I
10.4171/RMI/1368
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that residually-finite-by-weakly-sofic extensions are weakly sofic. More precisely, we show that if in an exact sequence of groups 1 ! N ,! K-* G ! 1 the group G is residually finite and N is weakly sofic, then K is weakly sofic.
引用
收藏
页码:1097 / 1104
页数:8
相关论文
共 50 条
  • [31] On weakly regular semi group
    Ahmad, Shaimaa H.
    Mahmood, Raida D.
    Khalil, Shahla M.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2021, 24 (06): : 1837 - 1843
  • [32] ENSURING A GROUP IS WEAKLY NILPOTENT
    Zarrin, Mohammad
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (12) : 4739 - 4752
  • [33] Finite type approximations of Gibbs measures on sofic subshifts
    Chazottes, JR
    Ramirez, L
    Ugalde, E
    NONLINEARITY, 2005, 18 (01) : 445 - 463
  • [34] SOFIC GROUPS ARE NOT LOCALLY EMBEDDABLE INTO FINITE MOUFANG LOOPS
    Ghumashyan, Heghine
    Gurican, Jaroslav
    MATHEMATICA BOHEMICA, 2022, 147 (01): : 11 - 18
  • [35] The residually weakly primitive geometries of HS
    Leemans, Dimitri
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 33 : 231 - 236
  • [36] Weakly SS-Quasinormal Minimal Subgroups and the Nilpotency of a Finite Group
    T. Zhao
    X. Zhang
    Ukrainian Mathematical Journal, 2014, 66 : 209 - 217
  • [37] Weakly SS-Quasinormal Minimal Subgroups and the Nilpotency of a Finite Group
    Zhao, T.
    Zhang, X.
    UKRAINIAN MATHEMATICAL JOURNAL, 2014, 66 (02) : 209 - 217
  • [38] FINITELY PRESENTED SOLVABLE GROUP THAT IS NOT RESIDUALLY FINITE
    BAUMSLAG, G
    MATHEMATISCHE ZEITSCHRIFT, 1973, 133 (02) : 125 - 127
  • [39] RESIDUALLY FINITE HNN EXTENSIONS
    BAUMSLAG, B
    TRETKOFF, M
    COMMUNICATIONS IN ALGEBRA, 1978, 6 (02) : 179 - 194
  • [40] The Pro-Lie Group Aspect of Weakly Complete Algebras and Weakly Complete Group Hopf Algebras
    Dahmen, Rafael
    Hofmann, Karl Heinrich
    JOURNAL OF LIE THEORY, 2019, 29 (02) : 413 - 455