Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox

被引:34
|
作者
Koonin, Eugene V. [2 ]
Gootenberg, Jonathan S. [1 ]
Abudayyeh, Omar O. [1 ]
机构
[1] MIT, McGovern Inst Brain Res, Cambridge, MA 02139 USA
[2] Natl Ctr Biotechnol Informat, Natl Lib Med, NIH, Bethesda, MD 20894 USA
基金
美国国家卫生研究院;
关键词
ALTERED PAM SPECIFICITIES; RNA-GUIDED ENDONUCLEASE; NUCLEIC-ACID DETECTION; IN-VIVO; STRUCTURAL BASIS; EVOLUTIONARY CLASSIFICATION; DETECTION PLATFORM; PROTEIN CLEAVAGE; TARGETING RANGE; DENGUE VIRUS;
D O I
10.1021/acs.biochem.3c00159
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPRsystems mediate adaptive immunity in bacteria and archaeathrough diverse effector mechanisms and have been repurposed for versatileapplications in therapeutics and diagnostics thanks to their facilereprogramming with RNA guides. RNA-guided CRISPR-Cas targeting andinterference are mediated by effectors that are either componentsof multisubunit complexes in class 1 systems or multidomain single-effectorproteins in class 2. The compact class 2 CRISPR systems have beenbroadly adopted for multiple applications, especially genome editing,leading to a transformation of the molecular biology and biotechnologytoolkit. The diversity of class 2 effector enzymes, initially limitedto the Cas9 nuclease, was substantially expanded via computationalgenome and metagenome mining to include numerous variants of Cas12and Cas13, providing substrates for the development of versatile,orthogonal molecular tools. Characterization of these diverse CRISPReffectors uncovered many new features, including distinct protospaceradjacent motifs (PAMs) that expand the targeting space, improved editingspecificity, RNA rather than DNA targeting, smaller crRNAs, staggeredand blunt end cuts, miniature enzymes, promiscuous RNA and DNA cleavage,etc. These unique properties enabled multiple applications, such asharnessing the promiscuous RNase activity of the type VI effector,Cas13, for supersensitive nucleic acid detection. class 1 CRISPR systemshave been adopted for genome editing, as well, despite the challengeof expressing and delivering the multiprotein class 1 effectors. Therich diversity of CRISPR enzymes led to rapid maturation of the genomeediting toolbox, with capabilities such as gene knockout, base editing,prime editing, gene insertion, DNA imaging, epigenetic modulation,transcriptional modulation, and RNA editing. Combined with rationaldesign and engineering of the effector proteins and associated RNAs,the natural diversity of CRISPR and related bacterial RNA-guided systemsprovides a vast resource for expanding the repertoire of tools formolecular biology and biotechnology.
引用
收藏
页码:3465 / 3487
页数:23
相关论文
共 50 条
  • [42] Comprehensive optimization of a reporter assay toolbox for three distinct CRISPR-Cas systems
    Chen, Li
    Gao, Haoyuan
    Zhou, Bing
    Wang, Yu
    FEBS OPEN BIO, 2021, 11 (07): : 1965 - 1980
  • [43] CRISPR-Cas Systems in Streptococci
    Gong, Tao
    Lu, Miao
    Zhou, Xuedong
    Zhang, Anqi
    Tang, Boyu
    Chen, Jiamin
    Jing, Meiling
    Li, Yuqing
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2019, 32 : 1 - 37
  • [44] Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins
    Yuwei Zhu
    Fan Zhang
    Zhiwei Huang
    BMC Biology, 16
  • [45] Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species
    Pawluk, April
    Staals, Raymond H. J.
    Taylor, Corinda
    Watson, Bridget N. J.
    Saha, Senjuti
    Fineran, Peter C.
    Maxwell, Karen L.
    Davidson, Alan R.
    NATURE MICROBIOLOGY, 2016, 1 (08)
  • [46] CRISPR-Cas systems in enterococci
    Cabral, Amanda Seabra
    Lacerda, Fernanda de Freitas
    Leite, Vitor Luis Macena
    de Miranda, Filipe Martire
    da Silva, Amanda Beiral
    dos Santos, Barbara Araujo
    Lima, Jailton Lobo da Costa
    Teixeira, Lucia Martins
    Neves, Felipe Piedade Goncalves
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2024, : 3945 - 3957
  • [47] Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species
    Pawluk A.
    Staals R.H.J.
    Taylor C.
    Watson B.N.J.
    Saha S.
    Fineran P.C.
    Maxwell K.L.
    Davidson A.R.
    Nature Microbiology, 1 (8)
  • [48] Structural insights into the inactivation of CRISPR-Cas systems by diverse anti-CRISPR proteins
    Zhu, Yuwei
    Zhang, Fan
    Huang, Zhiwei
    BMC BIOLOGY, 2018, 16
  • [49] CRISPR-Cas Systems in Prokaryotes
    Burmistrz, Michal
    Pyrc, Krzysztof
    POLISH JOURNAL OF MICROBIOLOGY, 2015, 64 (03) : 193 - 202
  • [50] Adaptation in CRISPR-Cas Systems
    Sternberg, Samuel H.
    Richter, Hagen
    Charpentier, Emmanuelle
    Qimron, Udi
    MOLECULAR CELL, 2016, 61 (06) : 797 - 808