Noncommutative SO(2,3)* gauge theory of gravity

被引:0
|
作者
Ciric, Marija Dimitrijevic [1 ]
Dordevic, Dusan [1 ]
Gocanin, Dragoljub [1 ]
Nikolic, Biljana [1 ]
Radovanovic, Voja [1 ]
机构
[1] Univ Belgrade, Fac Phys, Studentski Trg 12-16, Belgrade 11000, Serbia
来源
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS | 2023年 / 232卷 / 23-24期
关键词
TOPOLOGICAL GRAVITY; GENERAL-RELATIVITY; GEOMETRY; FIELD; MODEL;
D O I
10.1140/epjs/s11734-023-00833-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Topological gravity (in the sense that it is metric-independent) in a 2n-dimensional spacetime can be formulated as a gauge field theory for the AdS gauge group SO(2, 2n - 1) by adding a multiplet of scalar fields. These scalars can break the gauge invariance of the topological gravity action, thus making a connection with Einstein's gravity. This review is about a noncommutative (NC) star-product deformation of the four-dimensional AdS gauge theory of gravity, including Dirac spinors and the Yang-Mills field. In general, NC actions can be expanded in powers of the canonical noncommutativity parameter 0 using the Seib erg-Witten map. The leading-order term of the expansion is the classical action, while the higher order 0-dependent terms are interpreted as new types of coupling between classical fields due to spacetime noncommutativity. We study how these perturbative NC corrections affect the field equations of motion and derive some phenomenological consequences, such as NC-deformed Landau levels of an electron. Finally, we discuss how topological gravity in four dimensions (both classical and noncommutative) appears as a low-energy sector of five-dimensional Chern-Simons gauge theory in the sense of Kaluza-Klein reduction.
引用
收藏
页码:3747 / 3760
页数:14
相关论文
共 50 条
  • [41] A GEOMETRIC FORMULATION OF THE SO(3,2) THEORY OF GRAVITY
    GOTZES, S
    HIRSHFELD, AC
    ANNALS OF PHYSICS, 1990, 203 (02) : 410 - 418
  • [42] Holographic complexity and noncommutative gauge theory
    Couch, Josiah
    Eccles, Stefan
    Fischler, Willy
    Xiao, Ming-Lei
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):
  • [43] Induced gauge theory on a noncommutative space
    Grosse, H.
    Wohlgenannt, M.
    EUROPEAN PHYSICAL JOURNAL C, 2007, 52 (02): : 435 - 450
  • [44] Gauge Theory on a Discrete Noncommutative Space
    Liangzhong Hu
    Adonai S. Sant'Anna
    International Journal of Theoretical Physics, 2003, 42 : 635 - 647
  • [45] Dynamics of strings in noncommutative gauge theory
    Gross, DJ
    Nekrasov, NA
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (10):
  • [46] Moving vortices in noncommutative gauge theory
    Horváthy, PA
    Stichel, PC
    PHYSICS LETTERS B, 2004, 583 (3-4) : 353 - 356
  • [47] Induced gauge theory on a noncommutative space
    Wohlgenannt, Michael
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2008, 56 (4-5): : 547 - 551
  • [48] Gauge theory solitons on the noncommutative cylinder
    Demidov, SV
    Dubovsky, SL
    Rubakov, VA
    Sibiryakov, SM
    THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 138 (02) : 269 - 283
  • [49] Unstable solitons in noncommutative gauge theory
    Aganagic, M
    Gopakumar, R
    Minwalla, S
    Strominger, A
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (04):
  • [50] Gauge theory on a discrete noncommutative space
    Hu, LZ
    Sant'Anna, AS
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (04) : 635 - 647